Model Counting with Algebraic Decision Diagrams

Vu Phan – COMP 600 (Rice University)

Monday 2019-04-08

Joint work with Moshe Vardi and Jeffrey Dudek

Overview: Model Counting

Satisfiability problem (SAT): whether Boolean formula has satisfying assignment

• Complexity: NP-complete [Cook, 1971]

Model counting problem (#SAT): number of satisfying assignments of Boolean formula

- Complexity: #P-complete [Valiant, 1979]
- Applications:
 - Hardware verification [Naveh et al., 2007]
 - Bayesian inference [Sang et al., 2005]
 - Medical diagnosis [Shwe et al., 1991]

Contents

Model Counting and Bayesian Inference

2 Algebraic Decision Diagrams for Model Counting

3 Empirical Evaluation

Progress

Model Counting and Bayesian Inference

2 Algebraic Decision Diagrams for Model Counting

3 Empirical Evaluation

Boolean Logic Syntax

Boolean formula (in Conjunctive Normal Form):

$$\varphi = x_1 \wedge \neg x_2 \wedge (x_1 \vee \neg x_2) \wedge (x_1 \vee x_2 \vee \neg x_3)$$

- Boolean variables: x_1, x_2, x_3
- Positive literals: x_1, x_2
- Negative literals: $\neg x_2, \neg x_3$

Boolean Logic Syntax

Boolean formula (in Conjunctive Normal Form):

$$\varphi = x_1 \wedge \neg x_2 \wedge (x_1 \vee \neg x_2) \wedge (x_1 \vee x_2 \vee \neg x_3)$$

- Boolean variables: x_1, x_2, x_3
- Positive literals: x_1, x_2
- Negative literals: $\neg x_2, \neg x_3$
- Disjunctions (clauses): $x_1, \neg x_2, (x_1 \lor \neg x_2), (x_1 \lor x_2 \lor \neg x_3)$

Boolean Logic Syntax

Boolean formula (in Conjunctive Normal Form):

$$\varphi = x_1 \wedge \neg x_2 \wedge (x_1 \vee \neg x_2) \wedge (x_1 \vee x_2 \vee \neg x_3)$$

- Boolean variables: x_1, x_2, x_3
- Positive literals: x_1, x_2
- Negative literals: $\neg x_2, \neg x_3$
- Disjunctions (clauses): $x_1, \neg x_2, (x_1 \lor \neg x_2), (x_1 \lor x_2 \lor \neg x_3)$
- Conjunction (formula): $x_1 \wedge \neg x_2 \wedge (x_1 \vee \neg x_2) \wedge (x_1 \vee x_2 \vee \neg x_3)$

Model Counting Problem [Valiant, 1979]

$$\varphi = x_1 \wedge \neg x_2 \wedge (x_1 \vee \neg x_2) \wedge (x_1 \vee x_2 \vee \neg x_3)$$
$$\varphi : \mathbb{B}^3 \to \mathbb{B}$$

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	$\varphi(x_1,x_2,x_3)$	Satisfying assignment?
Т	Т	Т	F	No
Τ	Т	F	F	No
Т	F	Т	Т	Yes , model $M_1 = \{x_1, \neg x_2, x_3\}$
Т	F	F	Т	Yes , model $M_2 = \{x_1, \neg x_2, \neg x_3\}$
F	Т	Т	F	No
F	Т	F	F	No
F	F	Т	F	No
F	F	F	F	No

Model count:

$$\#\varphi=\mathbf{2}$$

Weighted Model Counting Problem

$$\varphi = x_1 \land \neg x_2 \land (x_1 \lor \neg x_2) \land (x_1 \lor x_2 \lor \neg x_3)$$

$$\frac{\text{Literal weights}}{W(x_1) = 1.0 \quad W(\neg x_1) = 1.0}$$

$$W(x_2) = 0.2 \quad W(\neg x_2) = 0.8$$

$$W(x_3) = 0.3 \quad W(\neg x_3) = 0.7$$

Model weights:

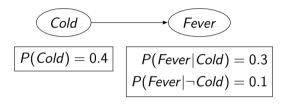
$$W(M_1) = W(\{x_1, \neg x_2, x_3\})$$
 = $W(x_1) \cdot W(\neg x_2) \cdot W(x_3)$ = $1.0 \cdot 0.8 \cdot 0.3 = 0.24$
 $W(M_2) = W(\{x_1, \neg x_2, \neg x_3\})$ = $W(x_1) \cdot W(\neg x_2) \cdot W(\neg x_3)$ = $1.0 \cdot 0.8 \cdot 0.7 = 0.56$

Weighted model count:

$$W(\varphi) = W(M_1) + W(M_2) = 0.24 + 0.56 = 0.8$$

Bayesian Network [Pearl, 1985]

Bayesian network:



Query:

$$P(Cold|Fever) = ?$$

Bayesian Network: Reduction to Model Counting [Sang et al., 2005]

Computing answer to query:

$$P(Cold|Fever) = \frac{P(Fever, Cold)}{P(Fever)} = \frac{W(\gamma)}{W(\varphi)} = \frac{0.12}{0.18} = 0.67$$

Progress

Model Counting and Bayesian Inference

2 Algebraic Decision Diagrams for Model Counting

Empirical Evaluation

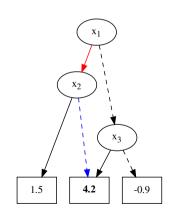
Algebraic Decision Diagram (ADD) [Bahar et al., 1997]

Function $f: \mathbb{B}^3 \to \mathbb{R}$

Exhaustive enumeration

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	$f(x_1,x_2,x_3)$
Т	Т	Т	1.5
Т	Т	F	1.5
Т	F	Т	4.2
Т	F	F	4.2
F	Т	Т	4.2
F	Т	F	-0.9
F	F	Т	4.2
F	F	F	-0.9

Algebraic Decision Diagram (ADD)



Variable Eliminations and Function Weight

Arbitrary function:

$$f: \mathbb{B}^2 \to \mathbb{R}$$

Arbitrary real-valued literal weights:

$$\begin{array}{cc} W(x_1) & W(\neg x_1) \\ W(x_2) & W(\neg x_2) \end{array}$$

Eliminating variable x_2 from $f(x_1, x_2)$:

$$g = \sum_{x_2}^{V} f$$
 $(g : \mathbb{B}^1 \to \mathbb{R})$ $g(x_1) = f(x_1, \mathsf{T}) \cdot W(x_2) + f(x_1, \mathsf{F}) \cdot W(\neg x_2)$

Eliminating variable x_1 from $g(x_1)$:

$$egin{align} h = \sum_{x_1}^W g & (h: \mathbb{B}^0 o \mathbb{R}) \ h() = g(\mathsf{T}) \cdot W(x_1) + g(\mathsf{F}) \cdot W(\neg x_1) \ \end{pmatrix}$$

Function weight:

$$W(f) = h()$$

Algebraic Decision Diagrams (ADDs) for Model Counting

Boolean formula $\varphi: \mathbb{B}^3 \to \mathbb{B}$

$$\varphi = x_1 \land \neg x_2 \land (x_1 \lor \neg x_2) \land (x_1 \lor x_2 \lor \neg x_3)$$

Arbitrary real-valued literal weights:

$$W(x_1), W(x_2), W(x_3)$$

 $W(\neg x_1), W(\neg x_2), W(\neg x_3)$

Query:

$$W(\varphi) = ?$$

Widen codomain of φ to create $f: \mathbb{B}^3 \to \mathbb{R}$

Compute function weight:

$$W(f) = \left(\sum_{x_1}^W \sum_{x_2}^W \sum_{x_3}^W f\right)()$$

(Represent functions with ADDs)

Computing answer to query:

$$W(\varphi) = W(f)$$

Representations: Monolithic versus Factored

$$\varphi = x_1 \wedge \neg x_2 \wedge (x_1 \vee \neg x_2) \wedge (x_1 \vee x_2 \vee \neg x_3)$$

Naive approach: using monolithic representation

ullet Builds a large ADD for the whole formula arphi

$$D(x_1,x_2,x_3) = ADD(\varphi)$$

- Scales poorly for complex formulas
 - $|ADD_nodes| = O(exp(|formula_variables|))$

Our approach: exploiting factored representation

- Builds a small ADD for each clause
- Combines ADDs iteratively
 - Eliminates variables as soon as possible to reduce sizes of ADDs

Exploiting Factored Representation in Conjunctive Normal Form

$$\varphi = x_1 \wedge \neg x_2 \wedge (x_1 \vee \neg x_2) \wedge (x_1 \vee x_2 \vee \neg x_3)$$

Build and combine ADDs:

$$D_{1}(x_{1}, x_{2}) = \sum_{x_{3}} ADD(x_{1} \lor x_{2} \lor \neg x_{3})$$

$$D_{2}(x_{1}) = \sum_{x_{2}} (D_{1}(x_{1}, x_{2}) \cdot ADD(\neg x_{2}) \cdot ADD(x_{1} \lor \neg x_{2}))$$

$$D_{3}() = \sum_{x_{1}} (D_{2}(x_{1}) \cdot ADD(x_{1}))$$

Heuristics:

- Grouping clauses into clusters: $\kappa_1 = \langle x_1 \rangle$, $\kappa_2 = \langle \neg x_2, x_1 \lor \neg x_2 \rangle$, $\kappa_3 = \langle x_1 \lor x_2 \lor \neg x_3 \rangle$
- Combining clusters: $\langle \langle \kappa_3, \kappa_2 \rangle, \kappa_1 \rangle$

Contributions

- Algorithm for weighted model counting using Algebraic Decision Diagrams (ADDs)
 - Exploits factored representation in Conjunctive Normal Form: $\varphi = c_1 \wedge c_2 \wedge \dots$
 - Builds small clause ADDs then combines them
 - Eliminates variables early
 - Utilizes various heuristics
- Tool: Algebraic Decision Diagram Model Counter (ADDMC)

Progress

Model Counting and Bayesian Inference

2 Algebraic Decision Diagrams for Model Counting

3 Empirical Evaluation

Comparing Weighted Model Counters

Setup:

Rice NOTS Linux cluster

• Timeout: 1000-second

Table: 1091 standard weighted model counting benchmarks

Weighted model counter	Benchmarks solved	Percentage solved
Cachet [Sang et al., 2004] miniC2D [Oztok and Darwiche, 2015] ADDMC (our tool)	776 913 1085	71% 84% 99%

Comparing Weighted Model Counters

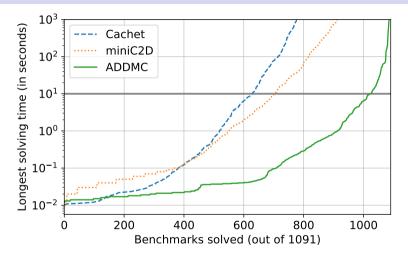


Figure: Cactus plot (rightmost is best)

Conclusion

- Problem: weighted model counting
 - Theoretical hardness: #P-complete
- Our approach: using ADDs, exploiting factored representation
 - Practical efficiency: outperforming other weighted model counters
- Future work:
 - Arbitrary-precision weighted model counting
 - Multi-core computing

References I

- R Iris Bahar, Erica A Frohm, Charles M Gaona, Gary D Hachtel, Enrico Macii, Abelardo Pardo, and Fabio Somenzi. Algebraic decision diagrams and their applications. *Formal Methods in System Design*, 1997.
- Stephen A Cook. The complexity of theorem-proving procedures. In *ACM symposium on Theory of computing*, 1971.
- Yehuda Naveh, Michal Rimon, Itai Jaeger, Yoav Katz, Michael Vinov, Eitan Marcu, and Gil Shurek. Constraint-based random stimuli generation for hardware verification. *AI Magazine*, 2007.
- Umut Oztok and Adnan Darwiche. A top-down compiler for sentential decision diagrams. In *IJCAI*, 2015.
- Judea Pearl. Bayesian networks: A model of self-activated memory for evidential reasoning. In *Conference of the Cognitive Science Society*, 1985.

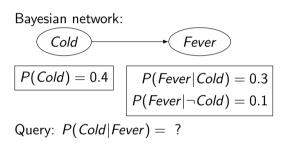
References II

- Tian Sang, Fahiem Bacchus, Paul Beame, Henry A Kautz, and Toniann Pitassi. Combining component caching and clause learning for effective model counting. *SAT*, 2004.
- Tian Sang, Paul Beame, and Henry A Kautz. Performing bayesian inference by weighted model counting. In AAAI, 2005.
- Michael A Shwe, Blackford Middleton, David E Heckerman, Max Henrion, Eric J Horvitz, Harold P Lehmann, and Gregory F Cooper. Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. *Methods of information in Medicine*, 1991.
- Leslie G Valiant. The complexity of enumeration and reliability problems. *SIAM J. on Computing*, 1979.

Backup

Backup slides follow

Motivation



Approaches:

- Variable elimination
- Recursive conditioning
- Reduction to model counting

Motivation

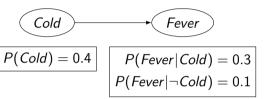
Real-world diagnostic decision-support tools [Shwe et al., 1991]:

- INTERNIST-1
- Quick Medical Reference (QMR)

Table: QMR-based Bayesian inference benchmarks, with median times in seconds [Sang et al., 2005]

Prior	Recursive Conditioning (Samlam)	Reduction to Model counting (Cachet)
0.05	3.5	1.4
0.1	2.5	1.0
0.2	3.4	3.4

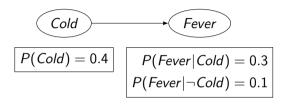
Bayesian network:



Query: P(Cold|Fever) = ?

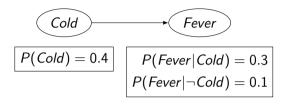
Conversion to model counting instances:

Bayesian element	Variable	Literal weight
Cold	V-	$W(x_1)=0.4$
Cold	x_1	$W(\neg x_1) = 0.6$
P(Fever Cold)	V	$W(x_2)=0.3$
F(Fever Cold)	<i>X</i> ₂	$W(\neg x_2) = 0.7$
$P(Fever \neg Cold)$	<i>x</i> ₃	$W(x_3)=0.1$
(Tever Cold)		$W(\neg x_3) = 0.9$
Fever	<i>X</i> ₄	$W(x_4)=1$
rever		$W(\neg x_4)=1$



Bayesian element	Variable
Cold	x_1
P(Fever Cold)	<i>x</i> ₂
P(Fever eg Cold)	<i>x</i> ₃
Fever	x_4

Bayesian relationship	Implication	Disjunction
$P(\mathit{Fever} \mathit{Cold}) o \mathit{Fever}$	$x_2 \rightarrow x_4$	$\neg x_2 \lor x_4$
$\mathit{Cold} ightarrow (\mathit{P(Fever} \mathit{Cold}) ightarrow \mathit{Fever})$	$x_1 \rightarrow (x_2 \rightarrow x_4)$	$\neg x_1 \lor (\neg x_2 \lor x_4)$



Bayesian element	Variable
Cold	<i>x</i> ₁
P(Fever Cold)	x_2
$P(\mathit{Fever} eg \mathit{Cold})$	<i>x</i> ₃
Fever	<i>X</i> 4

Bayesian relationship	Disjunction	Clause
$\mathit{Cold} ightarrow (\mathit{P(Fever} \mathit{Cold}) ightarrow \mathit{Fever})$	$\neg x_1 \lor \neg x_2 \lor x_4$	<i>c</i> ₁
$\mathit{Cold} ightarrow (\mathit{P(Fever} \mathit{Cold}) \leftarrow \mathit{Fever})$	$\neg x_1 \lor x_2 \lor \neg x_4$	<i>c</i> ₂
$\mathit{Cold} ightarrow (\mathit{P(Fever} \neg \mathit{Cold}) ightarrow \mathit{Fever})$	$\neg x_1 \lor \neg x_3 \lor x_4$	<i>c</i> ₃
$Cold ightarrow (P(Fever \neg Cold) \leftarrow Fever)$	$\neg x_1 \lor x_3 \lor \neg x_4$	C4

Bayesian element	Variable
Cold	<i>x</i> ₁
P(Fever Cold)	x_2
$P(\mathit{Fever} eg \mathit{Cold})$	<i>x</i> ₃
Fever	<i>X</i> ₄

Bayesian probability	Conjunction	Formula	Weighted model count
P(Fever)	$(c_1 \wedge c_2 \wedge c_3 \wedge c_4) \wedge x_4$	φ	$W(\varphi)$
P(Fever, Cold)	$(c_1 \wedge c_2 \wedge c_3 \wedge c_4) \wedge x_4 \wedge x_1$	γ	$\mathcal{W}(\gamma)$

$$P(Cold|Fever) = \frac{P(Fever, Cold)}{P(Fever)} = \frac{W(\gamma)}{W(\varphi)} = ?$$

Clauses:

$$c_1 = \neg x_1 \lor \neg x_2 \lor x_4$$

$$c_2 = \neg x_1 \lor x_2 \lor \neg x_4$$

$$c_3 = x_1 \lor \neg x_3 \lor x_4$$

$$c_4 = x_1 \lor x_3 \lor \neg x_4$$

Formula:

$$\varphi = (c_1 \wedge c_2 \wedge c_3 \wedge c_4) \wedge x_4$$

Model (satisfying assignment) M_1 of φ :

$$M_1 = \{x_1, x_2, x_3, x_4\}$$

Literal weights

$$W(x_1) = 0.4$$
 $W(\neg x_1) = 0.6$
 $W(x_2) = 0.3$ $W(\neg x_2) = 0.7$
 $W(x_3) = 0.1$ $W(\neg x_3) = 0.9$
 $W(x_4) = 1.0$ $W(\neg x_4) = 1.0$

Weight of model M_1 of φ :

$$W(M_1) = W(x_1) \cdot W(x_2) \cdot W(x_3) \cdot W(x_4)$$

= 0.012

Models of φ :

$$M_1 = \{x_1, x_2, x_3, x_4\}$$

$$M_2 = \{x_1, x_2, \neg x_3, x_4\}$$

$$M_3 = \{\neg x_1, x_2, x_3, x_4\}$$

$$M_4 = \{\neg x_1, \neg x_2, x_3, x_4\}$$

Literal weights		
$W(x_1) = 0.4$ $W(\neg x_1) = 0.6$		
$W(x_2) = 0.3$	$W(\neg x_2) = 0.7$	
$W(x_3) = 0.1$	$W(\neg x_3) = 0.9$	
$W(x_4) = 1.0$	$W(\neg x_4) = 1.0$	
$VV(x_4) = 1.0$	$VV(\neg x_4) = 1.0$	

Weighted model count of φ :

$$W(\varphi) = W(M_1) + W(M_2) + W(M_3) + W(M_4) = 0.18$$

Answer to query:

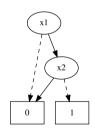
$$P(Cold|Fever) = \frac{W(\gamma)}{W(\varphi)} = \frac{0.12}{0.18} = 0.67$$

Algebraic Decision Diagrams (ADDs)

$$\varphi = x_1 \land \neg x_2 \land (x_1 \lor \neg x_2) \land (x_1 \lor x_2 \lor \neg x_3)$$
$$F_1 = ADD(\varphi)$$

$arphi:\mathbb{B}^3 o\mathbb{B}$				
x_1	<i>X</i> ₂	<i>X</i> 3	$\varphi(x_1,x_2,x_3)$	
Т	Т	Т	F	
Т	Т	F	F	
Т	F	Т	Т	
Т	F	F	Т	
F	Т	Т	F	
F	Т	F	F	
F	F	Т	F	
F	F	F	F	

 $F_1:\mathbb{B}^3 o\mathbb{R}$



Algebraic Decision Diagrams (ADDs)

$$\varphi = x_1 \land \neg x_2 \land (x_1 \lor \neg x_2) \land (x_1 \lor x_2 \lor \neg x_3)$$
$$F_1 = ADD(\varphi)$$

Literal weights				
$W(x_1)=1.0$	$W(\neg x_1) = 1.0$			
$W(x_2)=0.2$	$W(\neg x_2) = 0.8$			
$W(x_3)=0.3$	$W(\neg x_3) = 0.7$			

Query:

$$W(\varphi) = ?$$

Computing answer to query:

$$egin{aligned} W(arphi) &= W(F_1) & F_1: \mathbb{B}^3
ightarrow \mathbb{R} \ &= W(F_2) & F_2: \mathbb{B}^2
ightarrow \mathbb{R} \ &= W(F_3) & F_3: \mathbb{B}^1
ightarrow \mathbb{R} \ &= W(F_4) & F_4: \mathbb{B}^0
ightarrow \mathbb{R} \end{aligned}$$

$$F_2(x_1, x_2) = \sum_{\mathbf{x_3}} F_1(x_1, x_2, x_3)$$

$$= F_1(x_1, x_2, \mathsf{T}) \cdot W(\mathbf{x_3}) + F_1(x_1, x_2, \mathsf{F}) \cdot W(\neg \mathbf{x_3})$$

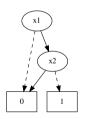
$$F_1(x_1, x_2, \mathsf{T}) : \mathbb{B}^2 \to \mathbb{R} \tag{1}$$

$$F_1(x_1, x_2, \mathsf{T}) \cdot W(x_3) : \mathbb{B}^2 \to \mathbb{R}$$
 (2)

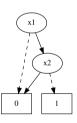
$$F_1(x_1, x_2, \mathsf{T}) \cdot W(x_3) + F_1(x_1, x_2, \mathsf{F}) \cdot W(\neg x_3) : \mathbb{B}^2 \to \mathbb{R}$$
 (3)

$$F_2(x_1,x_2) = \sum_{x_3} F_1(x_1,x_2,x_3)$$

ADD $F_1:\mathbb{B}^3 o\mathbb{R}$



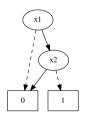
ADD $F_2: \mathbb{B}^2 \to \mathbb{R}$



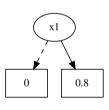
$$W(F_1) = W(F_2)$$

$$F_3(x_1) = \sum_{x_2} F_2(x_1, x_2)$$

ADD $F_2: \mathbb{B}^2 \to \mathbb{R}$



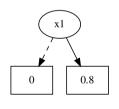
ADD $F_3: \mathbb{B}^1 \to \mathbb{R}$



$$W(F_2) = W(F_3)$$

$$F_4() = \sum_{x_1} F_3(x_1)$$

ADD $F_3: \mathbb{B}^1 \to \mathbb{R}$



ADD $F_4: \mathbb{B}^0 \to \mathbb{R}$

0.8

$$W(F_3) = W(F_4) = 0.8 = W(\varphi)$$

Algebraic Decision Diagrams (ADDs) for Model Counting

$$\varphi = x_1 \wedge \neg x_2 \wedge (x_1 \vee \neg x_2) \wedge (x_1 \vee x_2 \vee \neg x_3)$$

Literal weights			
$W(x_1)=1.0$	$W(\neg x_1) = 1.0$		
$W(x_2)=0.2$	$W(\neg x_2) = 0.8$		
$W(x_3)=0.3$	$W(\neg x_3) = 0.7$		

$$F_4() = \sum_{x_1} \sum_{x_2} \sum_{x_3} ext{ADD} \left(arphi
ight)$$
 $W(F_4) = 0.8 = W(arphi)$