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Overview: Model Counting

Satisfiability problem (SAT): whether Boolean formula has satisfying assignment

Complexity: NP-complete [Cook, 1971]

Model counting problem (#SAT): number of satisfying assignments of Boolean formula

Complexity: #P-complete [Valiant, 1979]

Applications in probabilistic reasoning:

Power-transmission reliability estimation [Duenas-Osorio et al., 2017]
Medical diagnosis [Shwe et al., 1991]
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Background: Boolean Logic

B = {0, 1} (Boolean set)

Variable x ∈ B Negation ¬x
0 1

1 0

x1 x2 Disjunction x1 ∨ x2
0 0 0

0 1 1

1 0 1

1 1 1

x1 x2 Conjunction x1 ∧ x2
0 0 0

0 1 0

1 0 0

1 1 1
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Problem: Unweighted Model Counting

Formula: F = (x1 ∨ x2) ∧ (x1 ∨ ¬x3)
Variable set of F : V = Vars (F ) = {x1, x2, x3}

Assignment set over V : 2V = {∅, {x1} , {x2} , {x3} , {x1, x2} , {x1, x3} , {x2, x3} ,V }
Assignment α ∈ 2V

F (α) : 2V → B Is α a model of F?
x1 x2 x3
0 0 0 0

Yes iff F (α) = 1

0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Unweighted model count of F : #F =
∑

α∈2V F (α) = 5
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Problem: Weighted Model Counting

Weight function: W : 2V → R (real-number set)

Assignment α ∈ 2V
W (α)

x1 x2 x3
0 0 0 2.0

0 0 1 3.0

0 1 0 2.0

0 1 1 3.0

1 0 0 3.0

1 0 1 3.0

1 1 0 4.0

1 1 1 4.0
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Problem: Weighted Model Counting

Formula: F : 2V → B
Weight function: W : 2V → R

Formula-weight product: F ·W : 2V → R

Assignment α ∈ 2V
F (α) W (α) (F ·W )(α)

x1 x2 x3
0 0 0 0 2.0 0.0

0 0 1 0 3.0 0.0

0 1 0 1 2.0 2.0

0 1 1 0 3.0 0.0

1 0 0 1 3.0 3.0

1 0 1 1 3.0 3.0

1 1 0 1 4.0 4.0

1 1 1 1 4.0 4.0

Weighted model count of F w.r.t. W : #(F ,W ) =
∑

α∈2V (F ·W )(α) = 16.0
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Related Work: Model Counting

Unweighted model counting:

Exact unweighted model counting:

sharpSAT [Thurley, 2006]
Component caching and implicit Boolean constraint propagation
Counting knight’s tours [Löbbing and Wegener, 1996]
Binary decision diagrams (BDDs)

Probabilistically-exact unweighted model counting:

GANAK [Sharma et al., 2019]
Probabilistic component caching

Approximate unweighted model counting:

ApproxMC2 [Chakraborty et al., 2016]
Universal hash functions

From weighted to unweighted exact model counting:

Polynomial-time reduction [Chakraborty et al., 2015]
Chain formulas
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Related Work: Model Counting

Exact weighted model counting:

Search: DPLL-like exploration of solution space

Cachet [Sang et al., 2004]
Component caching and clause learning

Knowledge compilation: efficient data structure for formula

c2d [Darwiche, 2004]
Deterministic decomposable negation normal form (d-DNNF)
d4 [Lagniez and Marquis, 2017]
Decision decomposable negation normal form (Decision-DNNF)
miniC2D [Oztok and Darwiche, 2015]
Sentential decision diagrams (SDDs)

Contribution: ADDMC [Phan, 2019; Dudek et al., 2019b]

Algebraic decision diagrams (ADDs) for components of formula
Combining ADDs using dynamic programming
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Data Structure: Binary Decision Diagrams [Bryant, 1986]

Formula F : 2V → B with variable count n = |V |

Exhaustive table
Inefficient data structure: Θ (2n)

Long construction & large storage, always

Assignment α ∈ 2V
F (α)

x1 x2 x3
0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Binary decision diagram (BDD)
Efficient data structure: O (2n)

x1

x2

α(x1) = 0

F(α) = 1

α(x1) = 1

x3

F(α) = 0

Root-terminal path α ∈ 2V
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Data Structure: Algebraic Decision Diagrams [Bahar et al., 1997]

Weight function W : 2V → R with variable count n = |V |

Exhaustive table
Inefficient data structure: Θ (2n)

Long construction & large storage, always

Assignment α ∈ 2V
W (α)

x1 x2 x3
0 0 0 2.0

0 0 1 3.0

0 1 0 2.0

0 1 1 3.0

1 0 0 3.0

1 0 1 3.0

1 1 0 4.0

1 1 1 4.0

Algebraic decision diagram (ADD)
Efficient data structure: O (2n)

x1

x2

x3

W(α) = 4.0 W(α) = 3.0 W(α) = 2.0

Root-terminal path α ∈ 2V
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Diagram Variable Orders and BDD/ADD Sizes: Example [Beyer, 2019]

Formula (x1 ∧ x2) ∨ (x3 ∧ x4) ∨ (x5 ∧ x6) ∨ (x7 ∧ x8)
Diagram variable order: injection {x1, x2, . . . , x8} → {1, 2, . . . , 8}

BDD with diagram variable order
x1 < x2 < . . . < x8

BDD with diagram variable order
x1 < x3 < x5 < x7 < x2 < x4 < x6 < x8
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Boole (Shannon) Expansion

Variable set V = {x1, x2, . . . , xn}
Boole (Shannon) expansion:

g : 2V → B

g(x1, x2, . . . , xn) = (x1 ∧ g(1, x2, . . . , xn)) ∨ (¬x1 ∧ g(0, x2, . . . , xn))

h : 2V → R

h(x1, x2, . . . , xn) = x1 · h(1, x2, . . . , xn) + (1− x1) · h(0, x2, . . . , xn)
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Projection: Satisfiability Problem

Formula F : 2V → B
Projection of F w.r.t. x1 is ∃x1F : 2V \{x1} → B

(∃x1F ) (x2, . . . , xn) = F (0, x2, . . . , xn) ∨ F (1, x2, . . . , xn)

Exhaustive projection

∃xn . . . ∃x2∃x1F = F (0, 0, . . . , 0) ∨ F (0, 0, . . . , 1) ∨ . . . ∨ F (1, 1, . . . , 1)

Proposition 1 (Satisfiability via Projection [Pan and Vardi, 2004])

F ∈ SAT⇔ ∃xn . . . ∃x2∃x1F = 1
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Projection: Unweighted Model Counting Problem

Formula F : 2V → B as function 2V → N (natural-number set {0, 1, 2, . . .})
Projection of F w.r.t. x1 is

∑
x1
F : 2V \{x1} → N(∑

x1

F

)
(x2, . . . , xn) = F (0, x2, . . . , xn) + F (1, x2, . . . , xn)

Exhaustive projection∑
xn

. . .
∑
x2

∑
x1

F = F (0, 0, . . . , 0) + F (0, 0, . . . , 1) + . . .+ F (1, 1, . . . , 1)

Remark 1 (Unweighted Model Counting via Projection)

#F =
∑
xn

. . .
∑
x2

∑
x1

F
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Projection: Weighted Model Counting Problem

Formula F : 2V → B, weight function W : 2V → R, product F ·W : 2V → R
Projection of F ·W w.r.t. x1 is

∑
x1

(F ·W ) : 2V \{x1} → R(∑
x1

(F ·W )

)
(x2, . . . , xn) = (F ·W )(0, x2, . . . , xn) + (F ·W )(1, x2, . . . , xn)

Exhaustive projection∑
xn

. . .
∑
x2

∑
x1

(F ·W ) = (F ·W )(0, 0, . . . , 0) + . . .+ (F ·W )(1, 1, . . . , 1)

Theorem 1 (Weighted Model Counting via Projection)

#(F ,W ) =
∑
xn

. . .
∑
x2

∑
x1

(F ·W )
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Monolithic Representation versus Factored Representation

Naive approach: using monolithic representation of formula F and weight function W

Constructs big ADDs for F and W with n variables

Scales poorly for large instances: ADD size is O (2n)

Contribution: algorithm that exploits factored representation of F and W

Constructs small ADDs for factors of F and W

Combines ADDs iteratively while keeping combinations small by:

Choosing which ADDs to combine heuristically
Applying early projection aggressively
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Progress

1 Model Counting Problem

2 Algebraic Decision Diagrams for Model Counting

3 Dynamic Programming for Model Counting

4 Empirical Evaluation
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Factored Representation: Conjunctive Normal Form (CNF) Formula

Formula:
F = (x1 ∨ x3) ∧ (¬x2 ∨ x3) ∧ (x2 ∨ ¬x3) ∧ x3

Variables: x1, x2, x3

Positive literals are non-negated variables: x1, x2, x3

Negative literals are negated variables: ¬x2,¬x3
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Factored Representation: Conjunctive Normal Form (CNF) Formula

Formula:
F = (x1 ∨ x3) ∧ (¬x2 ∨ x3) ∧ (x2 ∨ ¬x3) ∧ x3

Variables: x1, x2, x3

Positive literals are non-negated variables: x1, x2, x3

Negative literals are negated variables: ¬x2,¬x3
Clauses are disjunctions of literals: x1 ∨ x3,¬x2 ∨ x3, x2 ∨ ¬x3, x3
Conjunctive normal form (CNF) formula is conjunction of clauses: F

Factoring (formula and clauses as functions 2V → B):

F = (x1 ∨ x3) · (¬x2 ∨ x3) · (x2 ∨ ¬x3) · x3
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Factored Representation: Literal-Weight Function

Literal weights of variable x : weight (x) , weight (¬x) ∈ R
Unit-weight functions: giving pairs of literal weights

Wx1 : 2{x1} → R where ∅ 7→ weight (¬x1) and {x1} 7→ weight (x1)

Wx2 : 2{x2} → R where ∅ 7→ weight (¬x2) and {x2} 7→ weight (x2)

Literal-weight function over V = {x1, x2} is W : 2V → R
W (∅) = Wx1(∅) ·Wx2(∅)

W ({x1}) = Wx1({x1}) ·Wx2(∅)

W ({x2}) = Wx1(∅) ·Wx2({x2})
W (V ) = Wx1({x1}) ·Wx2({x2})

Factoring:

W = Wx1 ·Wx2
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Factored Representation: Literal-Weighted Model Count of CNF Formula

Construct factors of:

Conjunctive normal form (CNF) formula F with clauses C :

F =
∏

C∈F C

Literal-weight function W with variable set V :

W =
∏

x∈V Wx

Compute weighted model count of F w.r.t. W :

#(F ,W ) =
∑
xn

. . .
∑
x2

∑
x1

(F ·W ) =
∑
xn

. . .
∑
x2

∑
x1

(∏
C∈F

C ·
∏
x∈V

Wx

)

Avoid projecting all variables (
∑

xn
. . .
∑

x2

∑
x1

) after processing big product (F ·W )

Project each variable (
∑

x) as early as possible while processing small products (C ·Wx)
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Early Projection

Theorem 2

If we have:

Variable sets Y ,Z

Functions g : 2Y → R, h : 2Z → R
Variable x ∈ Y \ Z

Then:

∑
x

(g · h) =

(∑
x

g

)
· h

Early projection can reduce sizes of intermediate computations

Database query optimization [Kolaitis and Vardi, 2000]

Satisfiability problem [Pan and Vardi, 2005]
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Early Projection: Unweighted Model Counting

CNF formula F = (x1 ∨ x3) ∧ (¬x2 ∨ x3) ∧ (x2 ∨ ¬x3) ∧ x3

Clusters (partition of clauses)

κ1 = {x1 ∨ x3}
κ2 = {¬x2 ∨ x3, x2 ∨ ¬x3}
κ3 = {x3}

Late projection∑
x3∑
x2∑
x1

·

κ3κ2κ1

Early projection∑
x3

·

κ3
∑

x2

·

κ2
∑

x1

κ1

#F =
∑

x3

∑
x2

∑
x1

(κ1 · κ2 · κ3) =
∑

x3

(∑
x2

(∑
x1
κ1 · κ2

)
· κ3
)
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Early Projection: Weighted Model Counting

Formula F = (x1 ∨ x3)∧ (¬x2 ∨ x3)∧ (x2 ∨ ¬x3)∧ x3 with weight function W = Wx1 ·Wx2 ·Wx3

Clusters (partition of clauses)

κ1 = {x1 ∨ x3}
κ2 = {¬x2 ∨ x3, x2 ∨ ¬x3}
κ3 = {x3}

Early projection∑
x3

·

κ3 ·Wx3

∑
x2

·

κ2 ·Wx2

∑
x1

κ1 ·Wx1

#(F ,W ) =
∑

x3

(∑
x2

(∑
x1

(κ1 ·Wx1) · κ2 ·Wx2

)
· κ3 ·Wx3

)
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Algorithm

Algorithm 1: Computing Literal-Weighted Model Count of CNF Formula

Input: Formula F = {C1,C2, . . . ,Cm} and weight function W over set V of n variables
1 γ ← cluster-variable-order(V ) /* function γ : V → {1, 2, . . . , n} */
2 γ′ ← clause-order(F , γ) /* function γ′ : F → {1, 2, . . . , n} */
3 for i = 1, 2, . . . , n
4 κi ← {C ∈ F : γ′(C ) = i}
5 for i = 1, 2, . . . , n
6 Vi ← Vars (κi ) \ ∪p>iVars (κp)
7 for i = 1, 2, . . . , n
8 Ai ←

∏
B∈κi B

9 for x ∈ Vi

10 Ai ←
∑

x (Ai ·Wx) /* W = Wx1 ·Wx2 · . . . ·Wxn */
11 j ← cluster-choice(Ai , i) /* j > i */
12 κj ← κj ∪ {Ai}
13 return An
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Heuristics for Algorithm with ADDs

CNF formula F = {C1,C2, . . . ,Cm} over set V of n variables

To construct ADDs:

Diagram variable-order heuristic: function δ : V → {1, 2, . . . , n}
ADD size depends heavily on δ

To build clusters:

Cluster variable-order heuristic: function γ : V → {1, 2, . . . , n}
Clause-order heuristic: function γ′ : F → {1, 2, . . . , n}

To combine clusters:

Cluster-choice heuristic: how to choose which clusters to combine at each step
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Heuristics: Gaifman Graphs for Variable Orders

Primal constraint (Gaifman) graph of CNF formula:

Each vertex corresponds to a variable

Two vertices are adjacent iff both corresponding variables appear in the same clause

Formula:

(x1 ∨ x3) ∧ (¬x2 ∨ x3) ∧ (x2 ∨ ¬x3) ∧ x3

Gaifman graph:

x1 x2

x3
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Heuristics: Diagram Variable Order and Cluster Variable Order

Heuristics to find vertex order for Gaifman graph (corresponding to variable order for formula):

Maximum-cardinality search (MCS) [Tarjan and Yannakakis, 1984]
Iteratively choose a vertex adjacent to the greatest number of previously chosen vertices

Inverse MCS (InvMCS)

Lexicographic search for perfect order (LexP) [Rose et al., 1976]

1 Assign to each vertex an initially empty label (reverse-sorted list of numbers)
2 For i = n, n − 1, . . . , 1:

1 Choose a vertex u whose label is lexicographically largest
2 Add i to labels of neighbors of u

Inverse LexP (InvLexP)

Random
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Heuristics: Clause Order

Given:

CNF formula F = {C1,C2, . . . ,Cm} over set V of n variables

Cluster variable order γ : V → {1, 2, . . . , n}
Heuristics to find clause order γ′ : F → {1, 2, . . . , n}:

Bucket elimination (BE) [Dechter, 1999]

γ′(C ) = min
x∈Vars(C)

γ(x)

Bouquet’s Method (BM) [Bouquet, 1999]

γ′(C ) = max
x∈Vars(C)

γ(x)
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Heuristics: Cluster Choice

Given clusters
(partition of clauses

in CNF formula)

κ1 = {x1 ∨ x3}
κ2 = {¬x2 ∨ x3, x2 ∨ ¬x3}
κ3 = {x3 ∨ x4}
κ4 = {x4}

List: combines each
projected cluster with the

following cluster∑
x4

·

κ4
∑

x3

·

κ3
∑

x2

·

κ2
∑

x1

κ1

Tree: combines each
projected cluster with the
furthest possible cluster∑

x4

·

κ4
∑

x3

·

κ3
∑

x2

κ2

∑
x1

κ1
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Contributions: Theoretical Framework and Empirical Evaluation

Contributions:

1 Algorithm for weighted model counting using algebraic decision diagrams (ADDs)

Exploiting factored representation of:

Conjunctive normal form (CNF) formula F =
∏

C∈F C
Literal-weighted function W =

∏
x∈V Wx

Constructing small ADDs for factors of F and W
Combining ADDs iteratively while keeping combinations small by:

Choosing which ADDs to combine heuristically
Applying early projection aggressively

2 Tool for weighted model counting: Algebraic Decision Diagram Model Counter (ADDMC)

Analysis of ADDMC heuristics
Comparison of ADDMC to state-of-the-art weighted model counters

Public GitHub repository:
https://github.com/vardigroup/ADDMC
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Benchmarks

1914 benchmarks: CNF literal-weighted model counting problem instances

1091 benchmarks with literal weights in interval [0, 1]

823 originally unweighted benchmarks

Randomly generating literal weights:

Either weight (x) = 0.5 and weight (¬x) = 1.5
Or weight (x) = 1.5 and weight (¬x) = 0.5

These weights reduce floating-point underflow/overflow for all model counters
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Experiment 1: Comparing ADDMC Heuristics

Rice NOTS Linux cluster:

Hardware: Xeon E5-2650v2 CPUs (2.60-GHz)

Memory limit: 24 GB

Time limit: 10 seconds
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Experiment 1: Comparing ADDMC Heuristics

Setup:

Benchmarks: 1914

ADDMC heuristic configurations: 245

Table 1: Performance of best, second best, median, best monolithic, and worst heuristic configurations

Diagram var order Cluster var order Clause order Cluster choice Solved Standing

MCS LexP BM Tree 1202 Best

MCS InvLexP BE Tree 1200 Best-2nd

LexP LexP BE List 504 Median

LexP Mono 188 Best-Mono

Random Random BE List 53 Worst
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Experiment 1: Comparing ADDMC Heuristics
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Figure 1: Runtime of best, second best, median, best monolithic, and worst heuristic configurations
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Experiment 2: Comparing Weighted Model Counters

Rice NOTS Linux cluster:

Hardware: Xeon E5-2650v2 CPUs (2.60-GHz)

Memory limit: 24 GB

Time limit: 1000 seconds
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Experiment 2: Comparing Weighted Model Counters

Table 2: Performance of state-of-the-art weighted model counters

Weight model counters
Benchmarks solved (of 1914)

Unique solver Fastest solver Total

Virtual best solvers (VBS)
VBS – – 1771
VBS∗ (no ADDMC) – – 1647

Actual solvers

d4 12 283 1587
c2d 0 13 1417
miniC2D 8 61 1407
ADDMC (our tool) 124 763 1404
Cachet 14 651 1383
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Experiment 2: Comparing Weighted Model Counters
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Figure 2: Runtime of weighted model counters
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Summary

Motivation: probabilistic reasoning applications

Power-transmission reliability estimation
Medical diagnosis

Problem: model counting (#SAT)

Complexity: #P-complete

Our approach:

Using algebraic decision diagrams (ADDs)
Exploiting factored representation

Empirical result: improvement for virtual best solver of weighted model counters
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To Ph.D. and Beyond

Future work:
1 Increase ADDMC’s accuracy and speed:

Arbitrary-precision model counting
Multi-core computing

Neither feature supported by the currently used ADD library: CUDD [Somenzi, 2015]
Both features supported by another library: Sylvan [van Dijk and van de Pol, 2015]

2 Build and combine clusters better for #SAT: tree decompositions of Gaifman graphs
(Known to work for #P-hard problem of tensor-network contraction [Dudek et al., 2019a])

3 Try efficient data structures beyond ADDs:

Affine ADDs (AADDs) [Sanner and McAllester, 2005]
Represent additive and multiplicative functions compactly
AND/OR multi-valued decision diagrams (AOMDDs) [Mateescu et al., 2008]
Compile graphical models to answer queries in polynomial-time

4 Apply this framework (efficient data structure & dynamic programming & early projection)
to probabilistic reasoning – e.g., most likely explanation – directly (no reduction to #SAT)
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