Weighted Model Counting with Algebraic Decision Diagrams

Vu Phan's M.S. thesis defense - Computer Science Department, Rice University

Thursday 2019-11-07
M.S. committee: Dr. Moshe Vardi (chair), Dr. Devika Subramanian, Dr. Swarat Chaudhuri

Overview: Model Counting

Satisfiability problem (SAT): whether Boolean formula has satisfying assignment

- Complexity: NP-complete [Cook, 1971]

Model counting problem (\#SAT): number of satisfying assignments of Boolean formula

- Complexity: \#P-complete [Valiant, 1979]
- Applications in probabilistic reasoning:
- Power-transmission reliability estimation [Duenas-Osorio et al., 2017]
- Medical diagnosis [Shwe et al., 1991]

Contents

(1) Model Counting Problem
(2) Algebraic Decision Diagrams for Model Counting
(3) Dynamic Programming for Model Counting
4) Empirical Evaluation

Progress

(1) Model Counting Problem

(2) Algebraic Decision Diagrams for Model Counting

(3) Dynamic Programming for Model Counting
4) Empirical Evaluation

Background: Boolean Logic

$$
\mathbb{B}=\{0,1\}(\text { Boolean set })
$$

Variable $x \in \mathbb{B}$	Negation $\neg x$
0	1
1	0

x_{1}	x_{2}	Disjunction $x_{1} \vee x_{2}$
0	0	0
0	1	1
1	0	1
1	1	1

x_{1}	x_{2}	Conjunction $x_{1} \wedge x_{2}$
0	0	0
0	1	0
1	0	0
1	1	1

Problem: Unweighted Model Counting

Formula: $F=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{3}\right)$
Variable set of $F: V=\operatorname{Vars}(F)=\left\{x_{1}, x_{2}, x_{3}\right\}$
Assignment set over $V: 2^{V}=\left\{\varnothing,\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{3}\right\},\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\},\left\{x_{2}, x_{3}\right\}, V\right\}$

Assignment $\alpha \in 2^{V}$			$F(\alpha): 2^{V} \rightarrow \mathbb{B}$	Is α a model of $F ?$
x_{1}	x_{2}	x_{3}		
0	0	0	0	
0	0	1	0	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	

Unweighted model count of $F: \# F=\sum_{\alpha \in 2^{v}} F(\alpha)=5$

Problem: Weighted Model Counting

Weight function: $W: 2^{V} \rightarrow \mathbb{R}$ (real-number set)

Assignment $\alpha \in 2^{V}$			$W(\alpha)$
x_{1}	x_{2}	x_{3}	
0	0	0	2.0
0	0	1	3.0
0	1	0	2.0
0	1	1	3.0
1	0	0	3.0
1	0	1	3.0
1	1	0	4.0
1	1	1	4.0

Problem: Weighted Model Counting

Formula: $F: 2^{V} \rightarrow \mathbb{B}$
Weight function: $W: 2^{V} \rightarrow \mathbb{R}$
Formula-weight product: $F \cdot W: 2^{V} \rightarrow \mathbb{R}$

Assignment $\alpha \in 2^{V}$				$F(\alpha)$	$W(\alpha)$
x_{1}	x_{2}	x_{3}			
0	0	0	0	2.0	0.0
0	0	1	0	3.0	0.0
0	1	0	1	2.0	2.0
0	1	1	0	3.0	0.0
1	0	0	1	3.0	3.0
1	0	1	1	3.0	3.0
1	1	0	1	4.0	4.0
1	1	1	1	4.0	4.0

Weighted model count of F w.r.t. $W: \#(F, W)=\sum_{\alpha \in 2^{v}}(F \cdot W)(\alpha)=16.0$

Related Work: Model Counting

Unweighted model counting:

- Exact unweighted model counting:
- sharpSAT [Thurley, 2006]

Component caching and implicit Boolean constraint propagation

- Counting knight's tours [Löbbing and Wegener, 1996]

Binary decision diagrams (BDDs)

- Probabilistically-exact unweighted model counting:
- GANAK [Sharma et al., 2019]

Probabilistic component caching

- Approximate unweighted model counting:
- ApproxMC2 [Chakraborty et al., 2016]

Universal hash functions
From weighted to unweighted exact model counting:

- Polynomial-time reduction [Chakraborty et al., 2015] Chain formulas

Related Work: Model Counting

Exact weighted model counting:

- Search: DPLL-like exploration of solution space
- Cachet [Sang et al., 2004]

Component caching and clause learning

- Knowledge compilation: efficient data structure for formula
- c2d [Darwiche, 2004]

Deterministic decomposable negation normal form (d-DNNF)

- d4 [Lagniez and Marquis, 2017]

Decision decomposable negation normal form (Decision-DNNF)

- miniC2D [Oztok and Darwiche, 2015]

Sentential decision diagrams (SDDs)

- Contribution: ADDMC [Phan, 2019; Dudek et al., 2019b]
- Algebraic decision diagrams (ADDs) for components of formula
- Combining ADDs using dynamic programming

Progress

(1) Model Counting Problem

(2) Algebraic Decision Diagrams for Model Counting

(3) Dynamic Programming for Model Counting

4) Empirical Evaluation

Data Structure: Binary Decision Diagrams [Bryant, 1986]

Formula $F: 2^{V} \rightarrow \mathbb{B}$ with variable count $n=|V|$

Exhaustive table
Inefficient data structure: $\Theta\left(2^{n}\right)$
Long construction \& large storage, always

Assignment $\alpha \in 2^{V}$			$F(\alpha)$
x_{1}	x_{2}	x_{3}	
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Binary decision diagram (BDD)

Efficient data structure: $\mathrm{O}\left(2^{n}\right)$

Root-terminal path $\alpha \in 2^{V}$

Data Structure: Algebraic Decision Diagrams [Bahar et al., 1997]

Weight function $W: 2^{V} \rightarrow \mathbb{R}$ with variable count $n=|V|$

Exhaustive table
Inefficient data structure: $\Theta\left(2^{n}\right)$
Long construction \& large storage, always

Assignment $\alpha \in 2^{V}$			$W(\alpha)$
x_{1}	x_{2}	x_{3}	
0	0	0	2.0
0	0	1	3.0
0	1	0	2.0
0	1	1	3.0
1	0	0	3.0
1	0	1	3.0
1	1	0	4.0
1	1	1	4.0

Algebraic decision diagram (ADD)
Efficient data structure: $\mathrm{O}\left(2^{n}\right)$

Root-terminal path $\alpha \in 2^{V}$

Diagram Variable Orders and BDD/ADD Sizes: Example [Beyer, 2019]

Formula $\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{4}\right) \vee\left(x_{5} \wedge x_{6}\right) \vee\left(x_{7} \wedge x_{8}\right)$
Diagram variable order: injection $\left\{x_{1}, x_{2}, \ldots, x_{8}\right\} \rightarrow\{1,2, \ldots, 8\}$

BDD with diagram variable order

$$
x_{1}<x_{2}<\ldots<x_{8}
$$

BDD with diagram variable order $x_{1}<x_{3}<x_{5}<x_{7}<x_{2}<x_{4}<x_{6}<x_{8}$

Boole (Shannon) Expansion

- Variable set $V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Boole (Shannon) expansion:
- $g: 2^{V} \rightarrow \mathbb{B}$

$$
g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1} \wedge g\left(1, x_{2}, \ldots, x_{n}\right)\right) \vee\left(\neg x_{1} \wedge g\left(0, x_{2}, \ldots, x_{n}\right)\right)
$$

- $h: 2^{V} \rightarrow \mathbb{R}$

$$
h\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} \cdot h\left(1, x_{2}, \ldots, x_{n}\right)+\left(1-x_{1}\right) \cdot h\left(0, x_{2}, \ldots, x_{n}\right)
$$

Projection: Satisfiability Problem

- Formula $F: 2^{V} \rightarrow \mathbb{B}$
- Projection of F w.r.t. x_{1} is $\exists_{x_{1}} F: 2^{V \backslash\left\{x_{1}\right\}} \rightarrow \mathbb{B}$

$$
\left(\exists_{x_{1}} F\right)\left(x_{2}, \ldots, x_{n}\right)=F\left(0, x_{2}, \ldots, x_{n}\right) \vee F\left(1, x_{2}, \ldots, x_{n}\right)
$$

- Exhaustive projection

$$
\exists_{x_{n}} \ldots \exists_{x_{2}} \exists_{x_{1}} F=F(0,0, \ldots, 0) \vee F(0,0, \ldots, 1) \vee \ldots \vee F(1,1, \ldots, 1)
$$

Proposition 1 (Satisfiability via Projection [Pan and Vardi, 2004])

$$
F \in \text { SAT } \Leftrightarrow \exists \exists_{x_{n}} \ldots \exists_{x_{2}} \exists_{x_{1}} F=1
$$

Projection: Unweighted Model Counting Problem

- Formula $F: 2^{V} \rightarrow \mathbb{B}$ as function $2^{V} \rightarrow \mathbb{N}$ (natural-number set $\{0,1,2, \ldots\}$)
- Projection of F w.r.t. x_{1} is $\sum_{x_{1}} F: 2^{V \backslash\left\{x_{1}\right\}} \rightarrow \mathbb{N}$

$$
\left(\sum_{x_{1}} F\right)\left(x_{2}, \ldots, x_{n}\right)=F\left(0, x_{2}, \ldots, x_{n}\right)+F\left(1, x_{2}, \ldots, x_{n}\right)
$$

- Exhaustive projection

$$
\sum_{x_{n}} \ldots \sum_{x_{2}} \sum_{x_{1}} F=F(0,0, \ldots, 0)+F(0,0, \ldots, 1)+\ldots+F(1,1, \ldots, 1)
$$

Remark 1 (Unweighted Model Counting via Projection)

$$
\# F=\sum_{x_{n}} \ldots \sum_{x_{2}} \sum_{x_{1}} F
$$

Projection: Weighted Model Counting Problem

- Formula $F: 2^{V} \rightarrow \mathbb{B}$, weight function $W: 2^{V} \rightarrow \mathbb{R}$, product $F \cdot W: 2^{V} \rightarrow \mathbb{R}$
- Projection of $F \cdot W$ w.r.t. x_{1} is $\sum_{x_{1}}(F \cdot W): 2^{V \backslash\left\{x_{1}\right\}} \rightarrow \mathbb{R}$

$$
\left(\sum_{x_{1}}(F \cdot W)\right)\left(x_{2}, \ldots, x_{n}\right)=(F \cdot W)\left(0, x_{2}, \ldots, x_{n}\right)+(F \cdot W)\left(1, x_{2}, \ldots, x_{n}\right)
$$

- Exhaustive projection

$$
\sum_{x_{n}} \cdots \sum_{x_{2}} \sum_{x_{1}}(F \cdot W)=(F \cdot W)(0,0, \ldots, 0)+\ldots+(F \cdot W)(1,1, \ldots, 1)
$$

Theorem 1 (Weighted Model Counting via Projection)

$$
\#(F, W)=\sum_{x_{n}} \ldots \sum_{x_{2}} \sum_{x_{1}}(F \cdot W)
$$

Monolithic Representation versus Factored Representation

Naive approach: using monolithic representation of formula F and weight function W

- Constructs big ADDs for F and W with n variables
- Scales poorly for large instances: ADD size is $\mathrm{O}\left(2^{n}\right)$

Contribution: algorithm that exploits factored representation of F and W

- Constructs small ADDs for factors of F and W
- Combines ADDs iteratively while keeping combinations small by:
- Choosing which ADDs to combine heuristically
- Applying early projection aggressively

Progress

(1) Model Counting Problem

(2) Algebraic Decision Diagrams for Model Counting
(3) Dynamic Programming for Model Counting

Factored Representation: Conjunctive Normal Form (CNF) Formula

Formula:

$$
F=\left(x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{3}
$$

- Variables: x_{1}, x_{2}, x_{3}
- Positive literals are non-negated variables: x_{1}, x_{2}, x_{3}
- Negative literals are negated variables: $\neg x_{2}, \neg x_{3}$

Factored Representation: Conjunctive Normal Form (CNF) Formula

Formula:

$$
F=\left(x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{3}
$$

- Variables: x_{1}, x_{2}, x_{3}
- Positive literals are non-negated variables: x_{1}, x_{2}, x_{3}
- Negative literals are negated variables: $\neg x_{2}, \neg x_{3}$
- Clauses are disjunctions of literals: $x_{1} \vee x_{3}, \neg x_{2} \vee x_{3}, x_{2} \vee \neg x_{3}, x_{3}$
- Conjunctive normal form (CNF) formula is conjunction of clauses: F

Factoring (formula and clauses as functions $2^{V} \rightarrow \mathbb{B}$):

$$
F=\left(x_{1} \vee x_{3}\right) \cdot\left(\neg x_{2} \vee x_{3}\right) \cdot\left(x_{2} \vee \neg x_{3}\right) \cdot x_{3}
$$

Factored Representation: Literal-Weight Function

Literal weights of variable x : weight (x), weight $(\neg x) \in \mathbb{R}$
Unit-weight functions: giving pairs of literal weights

$$
\begin{array}{ll}
W_{x_{1}}: 2^{\left\{x_{1}\right\}} \rightarrow \mathbb{R} & \text { where } \varnothing \mapsto \text { weight }\left(\neg x_{1}\right) \text { and }\left\{x_{1}\right\} \mapsto \text { weight }\left(x_{1}\right) \\
W_{x_{2}}: 2^{\left\{x_{2}\right\}} \rightarrow \mathbb{R} & \text { where } \varnothing \mapsto \text { weight }\left(\neg x_{2}\right) \text { and }\left\{x_{2}\right\} \mapsto \text { weight }\left(x_{2}\right)
\end{array}
$$

Literal-weight function over $V=\left\{x_{1}, x_{2}\right\}$ is $W: 2^{V} \rightarrow \mathbb{R}$

$$
\begin{array}{lll}
W(\varnothing) & =W_{x_{1}}(\varnothing) & \cdot W_{x_{2}}(\varnothing) \\
W\left(\left\{x_{1}\right\}\right) & =W_{x_{1}}\left(\left\{x_{1}\right\}\right) & \cdot W_{x_{2}}(\varnothing) \\
W\left(\left\{x_{2}\right\}\right) & =W_{x_{1}}(\varnothing) & \cdot W_{x_{2}}\left(\left\{x_{2}\right\}\right) \\
W(V) & =W_{x_{1}}\left(\left\{x_{1}\right\}\right) & \cdot W_{x_{2}}\left(\left\{x_{2}\right\}\right)
\end{array}
$$

Factoring:

$$
W=W_{x_{1}} \cdot W_{x_{2}}
$$

Factored Representation: Literal-Weighted Model Count of CNF Formula

Construct factors of:

- Conjunctive normal form (CNF) formula F with clauses C :

$$
F=\prod_{C \in F} C
$$

- Literal-weight function W with variable set V :

$$
W=\prod_{x \in V} W_{x}
$$

Compute weighted model count of F w.r.t. W :

$$
\#(F, W)=\sum_{x_{n}} \ldots \sum_{x_{2}} \sum_{x_{1}}(F \cdot W)=\sum_{x_{n}} \ldots \sum_{x_{2}} \sum_{x_{1}}\left(\prod_{C \in F} C \cdot \prod_{x \in V} W_{x}\right)
$$

Avoid projecting all variables $\left(\sum_{x_{n}} \ldots \sum_{x_{2}} \sum_{x_{1}}\right)$ after processing big product $(F \cdot W)$

- Project each variable $\left(\sum_{x}\right)$ as early as possible while processing small products ($C \cdot W_{x}$)

Early Projection

Theorem 2

If we have:

- Variable sets Y, Z
- Functions $g: 2^{Y} \rightarrow \mathbb{R}, h: 2^{Z} \rightarrow \mathbb{R}$
- Variable $x \in Y \backslash Z$

Then:

$$
\sum_{x}(g \cdot h)=\left(\sum_{x} g\right) \cdot h
$$

Early projection can reduce sizes of intermediate computations

- Database query optimization [Kolaitis and Vardi, 2000]
- Satisfiability problem [Pan and Vardi, 2005]

Early Projection: Unweighted Model Counting

CNF formula $F=\left(x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{3}$

| Clusters (partition of clauses) |
| :---: | :---: |
| $\kappa_{1}=\left\{x_{1} \vee x_{3}\right\}$ |
| $\kappa_{2}=\left\{\neg x_{2} \vee x_{3}, x_{2} \vee \neg x_{3}\right\}$ |
| $\kappa_{3}=\left\{x_{3}\right\}$ |$|$| Late projection |
| :---: | :---: |
| $\# F=\sum_{x_{3}} \sum_{x_{2}} \sum_{x_{1}}\left(\kappa_{1} \cdot \kappa_{2} \cdot \kappa_{3}\right)=\sum_{x_{3}}\left(\sum_{x_{2}}\left(\sum_{x_{1}} \kappa_{1} \cdot \kappa_{2}\right) \cdot \kappa_{3}\right)$ |

Early Projection: Weighted Model Counting

Formula $F=\left(x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{3}$ with weight function $W=W_{x_{1}} \cdot W_{x_{2}} \cdot W_{x_{3}}$
Clusters (partition of clauses)

$$
\begin{aligned}
& \kappa_{1}=\left\{x_{1} \vee x_{3}\right\} \\
& \kappa_{2}=\left\{\neg x_{2} \vee x_{3}, x_{2} \vee \neg x_{3}\right\} \\
& \kappa_{3}=\left\{x_{3}\right\}
\end{aligned}
$$

Early projection

$$
\#(F, W)=\sum_{x_{3}}\left(\sum_{x_{2}}\left(\sum_{x_{1}}\left(\kappa_{1} \cdot W_{x_{1}}\right) \cdot \kappa_{2} \cdot W_{x_{2}}\right) \cdot \kappa_{3} \cdot W_{x_{3}}\right)
$$

Algorithm

```
Algorithm 1: Computing Literal-Weighted Model Count of CNF Formula
    Input: Formula \(F=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}\) and weight function \(W\) over set \(V\) of \(n\) variables
\(1 \gamma \leftarrow\) cluster-variable-order \((V)\)
\(/^{*}\) function \(\gamma: V \rightarrow\{1,2, \ldots, n\}{ }^{*} /\)
\(2 \gamma^{\prime} \leftarrow\) clause-order \((F, \gamma) \quad /^{*}\) function \(\gamma^{\prime}: F \rightarrow\{1,2, \ldots, n\}^{*} /\)
for \(i=1,2, \ldots, n\)
\(4 \quad \kappa_{i} \leftarrow\left\{C \in F: \gamma^{\prime}(C)=i\right\}\)
5 for \(i=1,2, \ldots, n\)
- \(\quad V_{i} \leftarrow \operatorname{Vars}\left(\kappa_{i}\right) \backslash \cup_{p>i} \operatorname{Vars}\left(\kappa_{p}\right)\)
for \(i=1,2, \ldots, n\)
    \(A_{i} \leftarrow \prod_{B \in \kappa_{i}} B\)
        for \(x \in V_{i}\)
            \(A_{i} \leftarrow \sum_{x}\left(A_{i} \cdot W_{x}\right)\)
        \(j \leftarrow\) cluster-choice \(\left(A_{i}, i\right)\)
                                    \({ }^{*} W=W_{x_{1}} \cdot W_{x_{2}} \cdot \ldots \cdot W_{x_{n}}{ }^{*} /\)
                                    /*j> \(i^{*} /\)
        \(\kappa_{j} \leftarrow \kappa_{j} \cup\left\{A_{i}\right\}\)
    return \(A_{n}\)
```


Heuristics for Algorithm with ADDs

CNF formula $F=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ over set V of n variables
To construct ADDs:

- Diagram variable-order heuristic: function $\delta: V \rightarrow\{1,2, \ldots, n\}$ ADD size depends heavily on δ
To build clusters:
- Cluster variable-order heuristic: function $\gamma: V \rightarrow\{1,2, \ldots, n\}$
- Clause-order heuristic: function $\gamma^{\prime}: F \rightarrow\{1,2, \ldots, n\}$

To combine clusters:

- Cluster-choice heuristic: how to choose which clusters to combine at each step

Heuristics: Gaifman Graphs for Variable Orders

Primal constraint (Gaifman) graph of CNF formula:

- Each vertex corresponds to a variable
- Two vertices are adjacent iff both corresponding variables appear in the same clause Formula:

$$
\left(x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{3}
$$

Gaifman graph:

Heuristics: Diagram Variable Order and Cluster Variable Order

Heuristics to find vertex order for Gaifman graph (corresponding to variable order for formula):

- Maximum-cardinality search (MCS) [Tarjan and Yannakakis, 1984]

Iteratively choose a vertex adjacent to the greatest number of previously chosen vertices

- Inverse MCS (InvMCS)
- Lexicographic search for perfect order (LexP) [Rose et al., 1976]
(1) Assign to each vertex an initially empty label (reverse-sorted list of numbers)
(2) For $i=n, n-1, \ldots, 1$:
(1) Choose a vertex u whose label is lexicographically largest
(2) Add i to labels of neighbors of u
- Inverse LexP (InvLexP)
- Random

Heuristics: Clause Order

Given:

- CNF formula $F=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ over set V of n variables
- Cluster variable order $\gamma: V \rightarrow\{1,2, \ldots, n\}$

Heuristics to find clause order $\gamma^{\prime}: F \rightarrow\{1,2, \ldots, n\}$:

- Bucket elimination (BE) [Dechter, 1999]

$$
\gamma^{\prime}(C)=\min _{x \in \operatorname{Vars}(C)} \gamma(x)
$$

- Bouquet's Method (BM) [Bouquet, 1999]

$$
\gamma^{\prime}(C)=\max _{x \in \operatorname{Vars}(C)} \gamma(x)
$$

Heuristics: Cluster Choice

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { Given clusters } \\
\text { (partition of clauses } \\
\text { in CNF formula) }
\end{array} \\
& \\
& \kappa_{1}=\left\{x_{1} \vee x_{3}\right\} \\
& \kappa_{2}=\left\{\neg x_{2} \vee x_{3}, x_{2} \vee \neg x_{3}\right\} \\
& \kappa_{3}=\left\{x_{3} \vee x_{4}\right\} \\
& \kappa_{4}=\left\{x_{4}\right\}
\end{aligned}
$$

List: combines each projected cluster with the following cluster

Tree: combines each projected cluster with the furthest possible cluster

Contributions: Theoretical Framework and Empirical Evaluation

Contributions:
(1) Algorithm for weighted model counting using algebraic decision diagrams (ADDs)

- Exploiting factored representation of:
- Conjunctive normal form (CNF) formula $F=\prod_{C \in F} C$
- Literal-weighted function $W=\prod_{x \in V} W_{x}$
- Constructing small ADDs for factors of F and W
- Combining ADDs iteratively while keeping combinations small by:
- Choosing which ADDs to combine heuristically
- Applying early projection aggressively
(2) Tool for weighted model counting: Algebraic Decision Diagram Model Counter (ADDMC)
- Analysis of ADDMC heuristics
- Comparison of ADDMC to state-of-the-art weighted model counters

Public GitHub repository:
https://github.com/vardigroup/ADDMC

Progress

(1) Model Counting Problem

(2) Algebraic Decision Diagrams for Model Counting
(3) Dynamic Programming for Model Counting
4. Empirical Evaluation

Benchmarks

1914 benchmarks: CNF literal-weighted model counting problem instances

- 1091 benchmarks with literal weights in interval $[0,1]$
- 823 originally unweighted benchmarks
- Randomly generating literal weights:
- Either weight $(x)=0.5$ and weight $(\neg x)=1.5$
- Or weight $(x)=1.5$ and weight $(\neg x)=0.5$

These weights reduce floating-point underflow/overflow for all model counters

Experiment 1: Comparing ADDMC Heuristics

Rice NOTS Linux cluster:

- Hardware: Xeon E5-2650v2 CPUs (2.60-GHz)
- Memory limit: 24 GB
- Time limit: 10 seconds

Experiment 1: Comparing ADDMC Heuristics

Setup:

- Benchmarks: 1914
- ADDMC heuristic configurations: 245

Table 1: Performance of best, second best, median, best monolithic, and worst heuristic configurations

Diagram var order	Cluster var order	Clause order	Cluster choice	Solved	Standing
MCS	LexP	BM	Tree	1202	Best
MCS	InvLexP	BE	Tree	1200	Best-2nd
LexP	LexP	BE	List	504	Median
LexP	Mono				188
Best-Mono					
Random	Random	BE	List	53	Worst

Experiment 1: Comparing ADDMC Heuristics

Figure 1: Runtime of best, second best, median, best monolithic, and worst heuristic configurations

Experiment 2: Comparing Weighted Model Counters

Rice NOTS Linux cluster:

- Hardware: Xeon E5-2650v2 CPUs (2.60-GHz)
- Memory limit: 24 GB
- Time limit: 1000 seconds

Experiment 2: Comparing Weighted Model Counters

Table 2: Performance of state-of-the-art weighted model counters

Weight model counters		Benchmarks solved (of 1914)		
	Unique solver	Fastest solver	Total	
Virtual best solvers (VBS)	VBS	-	-	1771
	VBS* (no ADDMC)	-	-	1647
Actual solvers	d4	12	283	1587
	c2d	13	1417	
	miniC2D	61	1407	
	ADDMC (our tool)	$\mathbf{8}$	763	1404
	Cachet	$\mathbf{1 2 4}$	651	1383

Experiment 2: Comparing Weighted Model Counters

Figure 2: Runtime of weighted model counters

Summary

- Motivation: probabilistic reasoning applications
- Power-transmission reliability estimation
- Medical diagnosis
- Problem: model counting (\#SAT)
- Complexity: \#P-complete
- Our approach:
- Using algebraic decision diagrams (ADDs)
- Exploiting factored representation

Empirical result: improvement for virtual best solver of weighted model counters

To Ph.D. and Beyond

Future work:

(1) Increase ADDMC's accuracy and speed:

- Arbitrary-precision model counting
- Multi-core computing

Neither feature supported by the currently used ADD library: CUDD [Somenzi, 2015] Both features supported by another library: Sylvan [van Dijk and van de Pol, 2015]
(2) Build and combine clusters better for \#SAT: tree decompositions of Gaifman graphs (Known to work for \#P-hard problem of tensor-network contraction [Dudek et al., 2019a])
(3) Try efficient data structures beyond ADDs:

- Affine ADDs (AADDs) [Sanner and McAllester, 2005]

Represent additive and multiplicative functions compactly

- AND/OR multi-valued decision diagrams (AOMDDs) [Mateescu et al., 2008]

Compile graphical models to answer queries in polynomial-time
(1) Apply this framework (efficient data structure \& dynamic programming \& early projection) to probabilistic reasoning - e.g., most likely explanation - directly (no reduction to \#SAT)

References I

R Iris Bahar, Erica A Frohm, Charles M Gaona, Gary D Hachtel, Enrico Macii, Abelardo Pardo, and Fabio Somenzi. Algebraic decision diagrams and their applications. Form Method Syst Des, 10(2-3):171-206, 1997.
Dirk Beyer. Binary Decision Diagram. https://en.wikipedia.org/w/index.php?title= Binary_decision_diagram\&oldid=915269665, 2019.
Fabrice Bouquet. Gestion de la dynamicité et énumération d'impliquants premiers: une approche fondée sur les diagrammes de décision binaire. PhD thesis, Aix-Marseille 1, 1999.
Randal E Bryant. Graph-based algorithms for Boolean function manipulation. IEEE TC, 35(8), 1986.

Supratik Chakraborty, Dror Fried, Kuldeep S Meel, and Moshe Y Vardi. From weighted to unweighted model counting. In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

References II

Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. Algorithmic improvements in approximate counting for probabilistic inference: from linear to logarithmic SAT calls. Technical report, Rice University, 2016.
Stephen A Cook. The complexity of theorem-proving procedures. In ACM symposium on Theory of computing, 1971.
Adnan Darwiche. New advances in compiling CNF into decomposable negation normal form. In ECAI, pages 328-332, 2004.

Rina Dechter. Bucket elimination: a unifying framework for reasoning. Al, 113(1-2):41-85, 1999.

Jeffrey M Dudek, Leonardo Dueñas-Osorio, and Moshe Y Vardi. Efficient contraction of large tensor networks for weighted model counting through graph decompositions. arXiv preprint arXiv:1908.04381, 2019a.

References III

Jeffrey M. Dudek, Vu H.N. Phan, and Moshe Y. Vardi. ADDMC: exact weighted model counting with algebraic decision diagrams. arXiv preprint arXiv:1907.05000, 2019b.
Leonardo Duenas-Osorio, Kuldeep S Meel, Roger Paredes, and Moshe Y Vardi.
Counting-based reliability estimation for power-transmission grids. In AAAI, 2017.
Phokion G Kolaitis and Moshe Y Vardi. Conjunctive-query containment and constraint satisfaction. JCSS, 61(2):302-332, 2000.
Jean-Marie Lagniez and Pierre Marquis. An improved decision-DNNF compiler. In IJCAI, pages 667-673, 2017.
Martin Löbbing and Ingo Wegener. The number of knight's tours equals 33,439,123,484,294 counting with binary decision diagrams. the electronic journal of combinatorics, 3(1):5, 1996.

Robert Mateescu, Rina Dechter, and Radu Marinescu. AND/OR multi-valued decision diagrams for graphical models. JAIR, 33:465-519, 2008.

References IV

Umut Oztok and Adnan Darwiche. A top-down compiler for sentential decision diagrams. In IJCAI, pages 3141-3148, 2015.
G. Pan and M.Y. Vardi. Symbolic techniques in satisfiability solving. J Autom Reason, 35 (1-3):25-50, 2005.
Guoqiang Pan and Moshe Y Vardi. Search vs. symbolic techniques in satisfiability solving. In SAT, pages 235-250, 2004.
Vu Phan. Weighted model counting with algebraic decision diagrams. Master's thesis, Rice University, Houston, Texas, USA, 2019.
Donald J Rose, R Endre Tarjan, and George S Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM Journal on computing, 5(2):266-283, 1976.
Tian Sang, Fahiem Bacchus, Paul Beame, Henry A Kautz, and Toniann Pitassi. Combining component caching and clause learning for effective model counting. SAT, pages 20-28, 2004.

References V

Scott Sanner and David McAllester. Affine algebraic decision diagrams and their application to structured probabilistic inference. In IJCAI, pages 1384-1390, 2005.
Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S Meel. GANAK: a scalable probabilistic exact model counter. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, pages 1169-1176. AAAI Press, 2019.
Michael A Shwe, Blackford Middleton, David E Heckerman, Max Henrion, Eric J Horvitz, Harold P Lehmann, and Gregory F Cooper. Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. Methods of Information in Medicine, 1991.
Fabio Somenzi. CUDD: CU decision diagram package - release 3.0.0. University of Colorado at Boulder, 2015.
Robert E Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SICOMP, 13(3):566-579, 1984.

References VI

Marc Thurley. sharpSAT-counting models with advanced component caching and implicit BCP. In SAT, pages 424-429, 2006.
Leslie G Valiant. The complexity of enumeration and reliability problems. SICOMP, 8(3): 410-421, 1979.

Tom van Dijk and Jaco van de Pol. Sylvan: multi-core decision diagrams. In TACAS, pages 677-691, 2015.

