ADDMC: Weighted Model Counting with Algebraic Decision Diagrams

Jeffrey M. Dudek, Vu H. N. Phan (presenter), Moshe Y. Vardi Computer Science Department, Rice University

AAAI 2020/02/11, New York City

Abstract

- Algebraic decision diagrams (ADDs): efficient data structure for pseudo-Boolean functions
- ADDMC: ADD-based framework for computing exact weighted model counts of Boolean formulas

Model counting (#SAT): computing number of satisfying assignments of Boolean formula

- Complexity: #P-complete [Valiant, 1979]
- Numerous applications, especially in probabilistic reasoning Examples:
 - Medical diagnosis [Shwe et al., 1991]
 - Reliability analysis of power transmission [Duenas-Osorio et al., 2017]

1 Boolean Model Counting Problem (#SAT)

2 Algebraic Decision Diagrams (ADDs)

In the second second

4 Experimental Evaluation

Vu Phan - https://VuPhan314.github.io

Boolean Model Counting Problem (#SAT)

Background: Boolean Logic

 $\mathbb{B} = \{0,1\}$ (Boolean set)

Variable $x \in \mathbb{B}$	Negation $\neg x$
0	1
1	0

<i>x</i> ₁	<i>x</i> ₂	Disjunction $x_1 \lor x_2$
0	0	0
0	1	1
1	0	1
1	1	1

<i>x</i> ₁	<i>x</i> ₂	Conjunction $x_1 \wedge x_2$
0	0	0
0	1	0
1	0	0
1	1	1

Problem: Unweighted Model Counting

Formula: $F = (x_1 \lor x_2) \land (x_1 \lor \neg x_3)$						
Variable set : $V = \{x_1, x_2, x_3\}$						
		Assign	ment set: power s	set 2 ^V		
Assignment $\alpha \in 2^V$		$E(a) \cdot 2V \rightarrow \mathbb{R}$	Is a p model of E?			
x_1	x ₂	<i>x</i> 3	$\Gamma(\alpha): \mathbb{Z} \to \mathbb{D}$			
0	0	0	0			
0	0	1	0			
0	1	0	1	Vec iff $E(\alpha) = 1$		
0	1	1	0			
1	0	0	1	res in $F(\alpha) = 1$		
1	0	1	1			
1	1	0	1			
1	1	1	1			
Unweighted model count : $\#F = \sum_{\alpha \in 2^V} F(\alpha) = 5$						

Vu Phan - https://VuPhan314.github.io

Problem: Weighted Model Counting

Assignment $lpha \in 2^V$			$W(\alpha)$	
x_1	<i>x</i> ₂	<i>x</i> 3	$\mathcal{V}(\alpha)$	
0	0	0	2.0	
0	0	1	3.0	
0	1	0	2.0	
0	1	1	3.0	
1	0	0	3.0	
1	0	1	3.0	
1	1	0	4.0	
1	1	1	4.0	

Weight function: $W: 2^V \to \mathbb{R}$ (real-number set)

Problem: Weighted Model Counting

Assignment $\alpha \in 2^V$		$F(\alpha)$	$M(\alpha)$	$(E, M)(\alpha)$	
x_1	<i>x</i> ₂	<i>x</i> 3	$\Gamma(\alpha)$	$\mathcal{V}(\alpha)$	$(I \cdot V)(\alpha)$
0	0	0	0	2.0	0.0
0	0	1	0	3.0	0.0
0	1	0	1	2.0	2.0
0	1	1	0	3.0	0.0
1	0	0	1	3.0	3.0
1	0	1	1	3.0	3.0
1	1	0	1	4.0	4.0
1	1	1	1	4.0	4.0

Formula-weight product: $F \cdot W : 2^V \to \mathbb{R}$

Weighted model count: $\#(F, W) = \sum_{\alpha \in 2^V} (F \cdot W)(\alpha) = 16.0$

Related Work: Weighted Model Counting

Existing approaches and tools:

- Search: DPLL-based exploration of solution space
 - Cachet [Sang et al., 2004]
- **2** Knowledge compilation: efficient data structure *exponential blowup in worst case*
 - c2d [Darwiche, 2004]
 - miniC2D [Oztok and Darwiche, 2015]
 - d4 [Lagniez and Marquis, 2017]

Contribution: ADDMC

- Efficient data structure: algebraic decision diagrams (ADDs)
- Dynamic programming for combining ADDs mitigating exponential blowup

Boolean Model Counting Problem (#SAT)

2 Algebraic Decision Diagrams (ADDs)

In the second second

4 Experimental Evaluation

Data Structure: Binary Decision Diagram (BDD) [Bryant, 1986]

Formula $F: 2^V \to \mathbb{B}$ with variable count n = |V|

Full table Inefficient data structure: $\Theta(2^n)$ Assignment $\alpha \in 2^V$ $F(\alpha)$ X_1 X2 X3 0 0 0 0 0 0 1 0 0 Ω 0 0 1 0 0 1 0 0 1

Binary decision diagram (BDD) More efficient data structure: $O(2^n)$

Data Structure: Algebraic Decision Diagram (ADD) [Bahar et al., 1997]

Weight function $W: 2^V \to \mathbb{R}$ with variable count n = |V|

Full table					
Inefficient data structure: $\Theta(2^n)$					
Assignment $\alpha \in 2^V$			$M(\alpha)$		
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	$\mathcal{W}(\alpha)$		
0	0	0	2.0		
0	0	1	3.0		
0	1	0	2.0		
0	1	1	3.0		
1	0	0	3.0		
1	0	1	3.0		
1	1	0	4.0		
1	1	1	4.0		

Algebraic decision diagram (ADD) More efficient data structure: $O(2^n)$

Projection: Unweighted Model Counting Problem

- Formula $F : 2^{\{x_1,...,x_n\}} \to \mathbb{B}$ as function $2^{\{x_1,...,x_n\}} \to \mathbb{N}$ (natural-number set $\{0, 1, 2, \ldots\}$)
- **Projection** of *F* w.r.t. variable *x*₁:

$$\left(\sum_{x_1}F\right)(x_2,\ldots,x_n)=F(0,x_2,\ldots,x_n)+F(1,x_2,\ldots,x_n)$$

• Exhaustive projection:

$$\sum_{x_n} \dots \sum_{x_2} \sum_{x_1} F = F(0, 0, \dots, 0) + F(0, 0, \dots, 1) + \dots + F(1, 1, \dots, 1)$$

Remark 1 (Unweighted Model Count via Projection)

$$\#F = \sum_{x_n} \dots \sum_{x_2} \sum_{x_1} F$$

Projection: Weighted Model Counting Problem

- Formula-weight product $F \cdot W : 2^{\{x_1,...,x_n\}} \rightarrow \mathbb{R}$
- **Projection** of $F \cdot W$ w.r.t. variable x_1 :

$$\left(\sum_{x_1}(F\cdot W)\right)(x_2,\ldots,x_n)=(F\cdot W)(0,x_2,\ldots,x_n)+(F\cdot W)(1,x_2,\ldots,x_n)$$

• Exhaustive projection:

$$\sum_{x_n} \ldots \sum_{x_2} \sum_{x_1} (F \cdot W) = (F \cdot W)(0, 0, \ldots, 0) + \ldots + (F \cdot W)(1, 1, \ldots, 1)$$

Theorem 1 (Weighted Model Count via Projection)

$$\#(F,W)=\sum_{x_n}\ldots\sum_{x_2}\sum_{x_1}(F\cdot W)$$

Naive approach: using monolithic representation of formula F and weight function W

- Constructs big ADDs for F and W with n variables
- Scales poorly for large instances: ADDs are $O(2^n)$

Contribution: algorithm that exploits factored representation of F and W

- Constructs small ADDs for factors of F and W
- Combines ADDs with dynamic programming

Boolean Model Counting Problem (#SAT)

2 Algebraic Decision Diagrams (ADDs)

3 Factored Representation and Dynamic Programming

4 Experimental Evaluation

Factored Representation: Conjunctive Normal Form (CNF) Formula

Formula:

$$F = (x_1 \lor x_3) \land (\neg x_2 \lor x_3) \land (x_2 \lor \neg x_3) \land x_3$$

- **Positive literals** are non-negated variables: x_1, x_2, x_3
- Negative literals are negated variables: $\neg x_2, \neg x_3$

Factored Representation: Conjunctive Normal Form (CNF) Formula

Formula:

$$F = (x_1 \lor x_3) \land (\neg x_2 \lor x_3) \land (x_2 \lor \neg x_3) \land x_3$$

- Positive literals are non-negated variables: x₁, x₂, x₃
- Negative literals are negated variables: $\neg x_2, \neg x_3$
- **Clauses** are disjunctions of literals:

$$\begin{array}{ccc} \mathbf{x_1} \lor \mathbf{x_3} : 2^{\{x_1, x_3\}} & \to \mathbb{B} & \neg \mathbf{x_2} \lor \mathbf{x_3} : 2^{\{x_2, x_3\}} & \to \mathbb{B} \\ \mathbf{x_2} \lor \neg \mathbf{x_3} : 2^{\{x_2, x_3\}} & \to \mathbb{B} & \mathbf{x_3} : 2^{\{x_3\}} & \to \mathbb{B} \end{array}$$

• Conjunctive Normal Form (CNF) formula is conjunction of clauses: $F : 2^{\{x_1, x_2, x_3\}} \to \mathbb{B}$ Factorization:

$$F = (x_1 \lor x_3) \cdot (\neg x_2 \lor x_3) \cdot (x_2 \lor \neg x_3) \cdot x_3$$

17/29

Factored Representation: Literal-Weight Function

Each variable gets two literal weights:

 $\begin{array}{lll} \texttt{weight}\,(x_1)\in\mathbb{R} & \texttt{weight}\,(x_2)\in\mathbb{R} \\ \texttt{weight}\,(\neg x_1)\in\mathbb{R} & \texttt{weight}\,(\neg x_2)\in\mathbb{R} \end{array}$

Equivalently, each variable gets a unit-weight function:

Literal-weight function:

$$W: 2^{\{x_1, x_2\}} \rightarrow \mathbb{R}$$

Factorization:

$$W = W_{x_1} \cdot W_{x_2}$$

Construct factors of:

• Conjunctive Normal Form (CNF) formula F with clauses C:

$$F = \prod_{C \in F} C$$

• Literal-weight function W with variable set V:

$$W = \prod_{x \in V} W_x$$

Compute weighted model count:

$$\#(F,W) = \sum_{x_n} \dots \sum_{x_2} \sum_{x_1} (F \cdot W) = \sum_{x_n} \dots \sum_{x_2} \sum_{x_1} \left(\prod_{C \in F} C \cdot \prod_{x \in V} W_x \right)$$

Push projection (\sum) inward: early projection

19/29

Early Projection

Theorem 2

If we have:

- Variable sets Y and Z
- Functions $g:2^Y \to \mathbb{R}$ and $h:2^Z \to \mathbb{R}$
- Variable $x \in Y \setminus Z$

Then:

$$\sum_{x} (g \cdot h) = \left(\sum_{x} g\right) \cdot h$$

Early projection can reduce size of intermediate computation

- Database join-query optimization [McMahan et al., 2004]
- Boolean satisfiability [Pan and Vardi, 2005]

Early Projection: Unweighted Model Counting

CNF formula $F = (x_1 \lor x_3) \land (\neg x_2 \lor x_3) \land (x_2 \lor \neg x_3) \land x_3$

Heuristic: **bucket elimination** (of variable x_i from cluster κ_i) [Dechter, 1999]

Vu Phan - https://VuPhan314.github.io

Factored Representation and Dynamic Programming

Early Projection: Weighted Model Counting

CNF Formula $F = \kappa_1 \land \kappa_2 \land \kappa_3$ and literal-weight function $W = W_{x_1} \cdot W_{x_2} \cdot W_{x_3}$

Heuristic: bucket elimination (of variable x_i from cluster κ_i and unit-weight function W_{x_i})

Vu Phan - https://VuPhan314.github.io

Factored Representation and Dynamic Programming

Contributions:

Algorithm for weighted model counting using algebraic decision diagrams (ADDs)

- Constructing small ADDs for factors of formula and weight function
- Combining ADDs with dynamic programming and early projection
- ② Tool: Algebraic Decision Diagram Model Counter (ADDMC)
 - Comparison of ADDMC to state-of-the-art weighted model counters Public GitHub repository:

https://github.com/vardigroup/ADDMC

Boolean Model Counting Problem (#SAT)

2 Algebraic Decision Diagrams (ADDs)

In the second second

4 Experimental Evaluation

Benchmarks

1914 benchmarks: CNF model counting problem instances

1091 benchmarks from the **Bayes** class [Sang et al., 2005]

• Deterministic Quick Medical Reference

Grid Networks

• Plan Recognition

https://www.cs.rochester.edu/u/kautz/

823 benchmarks from the **Non-Bayes** class [Clarke et al., 2001; Sinz et al., 2003; Palacios and Geffner, 2009; Klebanov et al., 2013]

- Planning
- Bounded Model Checking
- Circuit
- Configuration
- Quantitative Information Flow
- Scheduling
- Handmade
- Random

http://www.cril.univ-artois.fr/KC/

High-performance computing cluster at Rice University (NOTS):

- Hardware: Xeon E5-2650v2 CPU (2.60-GHz)
- Memory limit: 24 GB
- Time limit: 1000 seconds

Experiment: Comparing Weighted Model Counters

Table 1: Performance of state-of-the-art weighted model counters

Weight model counters		Benchmarks solved (of 1914)		
		Unique solver	Fastest solver	Total
Virtual bast solvers (V/BS)	VBS1: with ADDMC	_	_	1771
Virtual best solvers (VDS)	VBSO: without ADDMC	_	_	1647
	d4	12	283	1587
Actual solvers	c2d	0	13	1417
	miniC2D	8	61	1407
	ADDMC – our tool	124	763	1404
	Cachet	14	651	1383

Experiment: Comparing Weighted Model Counters

Figure 1: Cactus plot of virtual best solvers (VBS1 with ADDMC; VBS0 without ADDMC) and actual solvers

Conclusion

Summary:

- Problem: Boolean model counting (#SAT)
 - Complexity: #P-complete
 - Numerous applications, especially in probabilistic reasoning
- Techniques:
 - Efficient data structure: algebraic decision diagrams (ADDs)
 - Dynamic programming
- Experimental result: ADDMC improves virtual best solver Future work:
 - Other efficient data structures
 - Affine algebraic decision diagrams (AADDs) [Sanner and McAllester, 2005]
 - AND/OR multi-valued decision diagrams (AOMDDs) [Mateescu et al., 2008]
 - Graph decomposition for Conjunctive Normal Form (CNF) clause clustering
 - Model counting with tensor-network contraction [Dudek et al., 2019]
 - Model counting with database technology [Dresden, 2020]

References I

- R Iris Bahar, Erica A Frohm, Charles M Gaona, Gary D Hachtel, Enrico Macii, Abelardo Pardo, and Fabio Somenzi. Algebraic decision diagrams and their applications. *Form Method Syst Des*, 10(2-3):171–206, 1997.
- Randal E Bryant. Graph-based algorithms for Boolean function manipulation. *IEEE TC*, 35(8), 1986.
- Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model checking using satisfiability solving. Form Method Syst Des, 19(1):7–34, 2001.
- Adnan Darwiche. New advances in compiling CNF into decomposable negation normal form. In *ECAI*, pages 328–332, 2004.
- Rina Dechter. Bucket elimination: a unifying framework for reasoning. *AI*, 113(1-2):41–85, 1999.
- TU Dresden. Exploiting database management systems and treewidth for counting. *Practical Aspects of Declarative Languages*, page 151, 2020.

References II

- Jeffrey M Dudek, Leonardo Dueñas-Osorio, and Moshe Y Vardi. Efficient contraction of large tensor networks for weighted model counting through graph decompositions. *arXiv preprint arXiv:1908.04381*, 2019.
- Leonardo Duenas-Osorio, Kuldeep S Meel, Roger Paredes, and Moshe Y Vardi.
 - Counting-based reliability estimation for power-transmission grids. In AAAI, 2017.
- Vladimir Klebanov, Norbert Manthey, and Christian Muise. SAT-based analysis and quantification of information flow in programs. In *QEST*, pages 177–192, 2013.
- Jean-Marie Lagniez and Pierre Marquis. An improved decision-DNNF compiler. In *IJCAI*, pages 667–673, 2017.
- Robert Mateescu, Rina Dechter, and Radu Marinescu. AND/OR multi-valued decision diagrams for graphical models. *JAIR*, 33:465–519, 2008.
- Benjamin J McMahan, Guoqiang Pan, Patrick Porter, and Moshe Y Vardi. Projection pushing revisited. In *EDBT*, pages 441–458, 2004.

References III

- Umut Oztok and Adnan Darwiche. A top-down compiler for sentential decision diagrams. In *IJCAI*, pages 3141–3148, 2015.
- Hector Palacios and Hector Geffner. Compiling uncertainty away in conformant planning problems with bounded width. JAIR, 35:623–675, 2009.
- G. Pan and M.Y. Vardi. Symbolic techniques in satisfiability solving. *J Autom Reason*, 35 (1-3):25–50, 2005.
- Tian Sang, Fahiem Bacchus, Paul Beame, Henry A Kautz, and Toniann Pitassi. Combining component caching and clause learning for effective model counting. *SAT*, pages 20–28, 2004.
- Tian Sang, Paul Beame, and Henry Kautz. Solving Bayesian networks by weighted model counting. In AAAI, volume 1, pages 475–482. AAAI Press, 2005.
- Scott Sanner and David McAllester. Affine algebraic decision diagrams and their application to structured probabilistic inference. In *IJCAI*, pages 1384–1390, 2005.

- Michael A Shwe, Blackford Middleton, David E Heckerman, Max Henrion, Eric J Horvitz, Harold P Lehmann, and Gregory F Cooper. Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. *Methods of Information in Medicine*, 1991.
- Carsten Sinz, Andreas Kaiser, and Wolfgang Küchlin. Formal methods for the validation of automotive product configuration data. *AI EDAM*, 17(1):75–97, 2003.
- Leslie G Valiant. The complexity of enumeration and reliability problems. *SICOMP*, 8(3): 410–421, 1979.