ADDMC: Weighted Model Counting with Algebraic Decision Diagrams

Jeffrey M. Dudek, Vu H. N. Phan (presenter), Moshe Y. Vardi

Computer Science Department, Rice University

AAAI 2020/02/11, New York City

Abstract

- Algebraic decision diagrams (ADDs): efficient data structure for pseudo-Boolean functions
- ADDMC: ADD-based framework for computing exact weighted model counts of Boolean formulas

Overview: Model Counting

Model counting (\#SAT): computing number of satisfying assignments of Boolean formula

- Complexity: \#P-complete [Valiant, 1979]
- Numerous applications, especially in probabilistic reasoning Examples:
- Medical diagnosis [Shwe et al., 1991]
- Reliability analysis of power transmission [Duenas-Osorio et al., 2017]

Progress

(1) Boolean Model Counting Problem (\#SAT)

(2) Algebraic Decision Diagrams (ADDs)

(3) Factored Representation and Dynamic Programming
(4) Experimental Evaluation

Background: Boolean Logic

$$
\mathbb{B}=\{0,1\} \text { (Boolean set })
$$

Variable $x \in \mathbb{B}$	Negation $\neg x$
0	1
1	0

x_{1}	x_{2}	Disjunction $x_{1} \vee x_{2}$
0	0	0
0	1	1
1	0	1
1	1	1

x_{1}	x_{2}	Conjunction $x_{1} \wedge x_{2}$
0	0	0
0	1	0
1	0	0
1	1	1

Problem: Unweighted Model Counting

Formula: $F=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{3}\right)$
Variable set: $V=\left\{x_{1}, x_{2}, x_{3}\right\}$
Assignment set: power set 2^{V}

Assignment $\alpha \in 2^{V}$			$F(\alpha): 2^{V} \rightarrow \mathbb{B}$	Is α a model of $F ?$
x_{1}	x_{2}	x_{3}		
0	0	0	0	
0	0	1	0	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	

Unweighted model count: $\# F=\sum_{\alpha \in 2^{\vee}} F(\alpha)=5$

Problem: Weighted Model Counting

Weight function: $W: 2^{V} \rightarrow \mathbb{R}$ (real-number set)

Assignment $\alpha \in 2^{V}$			$W(\alpha)$
x_{1}	x_{2}	x_{3}	
0	0	0	2.0
0	0	1	3.0
0	1	0	2.0
0	1	1	3.0
1	0	0	3.0
1	0	1	3.0
1	1	0	4.0
1	1	1	4.0

Problem: Weighted Model Counting

Formula-weight product: $F \cdot W: 2^{V} \rightarrow \mathbb{R}$

Assignment $\alpha \in 2^{V}$			$F(\alpha)$	$W(\alpha)$	$(F \cdot W)(\alpha)$
x_{1}	x_{2}	x_{3}			
0	0	0	0	2.0	0.0
0	0	1	0	3.0	0.0
0	1	0	1	2.0	2.0
0	1	1	0	3.0	0.0
1	0	0	1	3.0	3.0
1	0	1	1	3.0	3.0
1	1	0	1	4.0	4.0
1	1	1	1	4.0	4.0

Weighted model count: $\#(F, W)=\sum_{\alpha \in 2^{v}}(F \cdot W)(\alpha)=16.0$

Related Work: Weighted Model Counting

Existing approaches and tools:
(1) Search: DPLL-based exploration of solution space

- Cachet [Sang et al., 2004]
(2) Knowledge compilation: efficient data structure - exponential blowup in worst case
- c2d [Darwiche, 2004]
- miniC2D [Oztok and Darwiche, 2015]
- d4 [Lagniez and Marquis, 2017]

Contribution: ADDMC

- Efficient data structure: algebraic decision diagrams (ADDs)
- Dynamic programming for combining ADDs - mitigating exponential blowup

Progress

(1) Boolean Model Counting Problem (\#SAT)

(2) Algebraic Decision Diagrams (ADDs)
(3) Factored Representation and Dynamic Programming
(4) Experimental Evaluation

Data Structure: Binary Decision Diagram (BDD) [Bryant, 1986]

Formula $F: 2^{V} \rightarrow \mathbb{B}$ with variable count $n=|V|$

Full table
Inefficient data structure: $\Theta\left(2^{n}\right)$

Assignment $\alpha \in 2^{V}$			$F(\alpha)$
x_{1}	x_{2}	x_{3}	
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Binary decision diagram (BDD)

More efficient data structure: $\mathrm{O}\left(2^{n}\right)$

Data Structure: Algebraic Decision Diagram (ADD) [Bahar et al., 1997]

Weight function $W: 2^{V} \rightarrow \mathbb{R}$ with variable count $n=|V|$

Full table Inefficient data structure: $\Theta\left(2^{n}\right)$

Assignment $\alpha \in 2^{V}$			$W(\alpha)$
x_{1}	x_{2}	x_{3}	
0	0	0	2.0
0	0	1	3.0
0	1	0	2.0
0	1	1	3.0
1	0	0	3.0
1	0	1	3.0
1	1	0	4.0
1	1	1	4.0

Algebraic decision diagram (ADD)

 More efficient data structure: $\mathrm{O}\left(2^{n}\right)$

Projection: Unweighted Model Counting Problem

- Formula $F: 2^{\left\{x_{1}, \ldots, x_{n}\right\}} \rightarrow \mathbb{B}$ as function $2^{\left\{x_{1}, \ldots, x_{n}\right\}} \rightarrow \mathbb{N}$ (natural-number set $\{0,1,2, \ldots\}$)
- Projection of F w.r.t. variable x_{1} :

$$
\left(\sum_{x_{1}} F\right)\left(x_{2}, \ldots, x_{n}\right)=F\left(0, x_{2}, \ldots, x_{n}\right)+F\left(1, x_{2}, \ldots, x_{n}\right)
$$

- Exhaustive projection:

$$
\sum_{x_{n}} \ldots \sum_{x_{2}} \sum_{x_{1}} F=F(0,0, \ldots, 0)+F(0,0, \ldots, 1)+\ldots+F(1,1, \ldots, 1)
$$

Remark 1 (Unweighted Model Count via Projection)

$$
\# F=\sum_{x_{n}} \ldots \sum_{x_{2}} \sum_{x_{1}} F
$$

Projection: Weighted Model Counting Problem

- Formula-weight product $F \cdot W: 2^{\left\{x_{1}, \ldots, x_{n}\right\}} \rightarrow \mathbb{R}$
- Projection of $F \cdot W$ w.r.t. variable x_{1} :

$$
\left(\sum_{x_{1}}(F \cdot W)\right)\left(x_{2}, \ldots, x_{n}\right)=(F \cdot W)\left(0, x_{2}, \ldots, x_{n}\right)+(F \cdot W)\left(1, x_{2}, \ldots, x_{n}\right)
$$

- Exhaustive projection:

$$
\sum_{x_{n}} \ldots \sum_{x_{2}} \sum_{x_{1}}(F \cdot W)=(F \cdot W)(0,0, \ldots, 0)+\ldots+(F \cdot W)(1,1, \ldots, 1)
$$

Theorem 1 (Weighted Model Count via Projection)

$$
\#(F, W)=\sum_{x_{n}} \ldots \sum_{x_{2}} \sum_{x_{1}}(F \cdot W)
$$

Monolithic Representation versus Factored Representation

Naive approach: using monolithic representation of formula F and weight function W

- Constructs big ADDs for F and W with n variables
- Scales poorly for large instances: ADDs are O (2^{n})

Contribution: algorithm that exploits factored representation of F and W

- Constructs small ADDs for factors of F and W
- Combines ADDs with dynamic programming

Progress

(1) Boolean Model Counting Problem (\#SAT)

(2) Algebraic Decision Diagrams (ADDs)
(3) Factored Representation and Dynamic Programming
(4) Experimental Evaluation

Factored Representation: Conjunctive Normal Form (CNF) Formula

Formula:

$$
F=\left(x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{3}
$$

- Positive literals are non-negated variables: x_{1}, x_{2}, x_{3}
- Negative literals are negated variables: $\neg x_{2}, \neg x_{3}$

Factored Representation: Conjunctive Normal Form (CNF) Formula

Formula:

$$
F=\left(x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{3}
$$

- Positive literals are non-negated variables: x_{1}, x_{2}, x_{3}
- Negative literals are negated variables: $\neg x_{2}, \neg x_{3}$
- Clauses are disjunctions of literals:

$$
\begin{array}{rccc}
x_{1} \vee x_{3}: 2^{\left\{x_{1}, x_{3}\right\}} & \rightarrow \mathbb{B} & \neg x_{2} \vee x_{3}: 2^{\left\{x_{2}, x_{3}\right\}} & \rightarrow \mathbb{B} \\
x_{2} \vee \neg x_{3}: 2^{\left\{x_{2}, x_{3}\right\}} & \rightarrow \mathbb{B} & x_{3}: 2^{\left\{x_{3}\right\}} & \rightarrow \mathbb{B}
\end{array}
$$

- Conjunctive Normal Form (CNF) formula is conjunction of clauses: $F: 2^{\left\{x_{1}, x_{2}, x_{3}\right\}} \rightarrow \mathbb{B}$ Factorization:

$$
F=\left(x_{1} \vee x_{3}\right) \cdot\left(\neg x_{2} \vee x_{3}\right) \cdot\left(x_{2} \vee \neg x_{3}\right) \cdot x_{3}
$$

Factored Representation: Literal-Weight Function

Each variable gets two literal weights:

$$
\begin{array}{r}
\text { weight }\left(x_{1}\right) \in \mathbb{R} \\
\text { weight }\left(\neg x_{1}\right) \in \mathbb{R}
\end{array}
$$

$$
\begin{array}{r}
\text { weight }\left(x_{2}\right) \in \mathbb{R} \\
\text { weight }\left(\neg x_{2}\right) \in \mathbb{R}
\end{array}
$$

Equivalently, each variable gets a unit-weight function:

$$
W_{x_{1}}: 2^{\left\{x_{1}\right\}} \rightarrow \mathbb{R} \quad W_{x_{2}}: 2^{\left\{x_{2}\right\}} \rightarrow \mathbb{R}
$$

Literal-weight function:

$$
\begin{gathered}
W: 2^{\left\{x_{1}, x_{2}\right\}} \rightarrow \mathbb{R} \\
\text { Factorization: } \\
W=W_{x_{1}} \cdot W_{x_{2}}
\end{gathered}
$$

Factored Representation: Literal-Weighted Model Count of CNF Formula

Construct factors of:

- Conjunctive Normal Form (CNF) formula F with clauses C :

$$
F=\prod_{C \in F} C
$$

- Literal-weight function W with variable set V :

$$
W=\prod_{x \in V} W_{x}
$$

Compute weighted model count:

$$
\#(F, W)=\sum_{x_{n}} \ldots \sum_{x_{2}} \sum_{x_{1}}(F \cdot W)=\sum_{x_{n}} \cdots \sum_{x_{2}} \sum_{x_{1}}\left(\prod_{C \in F} C \cdot \prod_{x \in V} W_{x}\right)
$$

Push projection (\sum) inward: early projection

Early Projection

Theorem 2

If we have:

- Variable sets Y and Z
- Functions $g: 2^{Y} \rightarrow \mathbb{R}$ and $h: 2^{Z} \rightarrow \mathbb{R}$
- Variable $x \in Y \backslash Z$

Then:

$$
\sum_{x}(g \cdot h)=\left(\sum_{x} g\right) \cdot h
$$

Early projection can reduce size of intermediate computation

- Database join-query optimization [McMahan et al., 2004]
- Boolean satisfiability [Pan and Vardi, 2005]

Early Projection: Unweighted Model Counting

CNF formula $F=\left(x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{3}$

Clusters (partition of clauses) $\begin{aligned} & \kappa_{1}=\left\{x_{1} \vee x_{3}\right\} \\ & \kappa_{2}=\left\{\neg x_{2} \vee x_{3}, x_{2} \vee \neg x_{3}\right\} \\ & \kappa_{3}=\left\{x_{3}\right\} \end{aligned}$	Late projection	Early projection

Heuristic: bucket elimination (of variable x_{i} from cluster κ_{i}) [Dechter, 1999]

Early Projection: Weighted Model Counting

CNF Formula $F=\kappa_{1} \wedge \kappa_{2} \wedge \kappa_{3}$ and literal-weight function $W=W_{x_{1}} \cdot W_{x_{2}} \cdot W_{x_{3}}$

Heuristic: bucket elimination (of variable x_{i} from cluster κ_{i} and unit-weight function $W_{x_{i}}$)

Contributions: Theoretical Framework and Experimental Evaluation

Contributions:
(1) Algorithm for weighted model counting using algebraic decision diagrams (ADDs)

- Constructing small ADDs for factors of formula and weight function
- Combining ADDs with dynamic programming and early projection
(2) Tool: Algebraic Decision Diagram Model Counter (ADDMC)
- Comparison of ADDMC to state-of-the-art weighted model counters

Public GitHub repository:
https://github.com/vardigroup/ADDMC

Progress

(1) Boolean Model Counting Problem (\#SAT)

(2) Algebraic Decision Diagrams (ADDs)
(3) Factored Representation and Dynamic Programming
(4) Experimental Evaluation

Benchmarks

1914 benchmarks: CNF model counting problem instances

1091 benchmarks from the Bayes class [Sang et al., 2005]

- Deterministic Quick Medical Reference
- Grid Networks
- Plan Recognition
https://www.cs.rochester.edu/u/kautz/

823 benchmarks from the Non-Bayes class
[Clarke et al., 2001; Sinz et al., 2003; Palacios and Geffner, 2009; Klebanov et al., 2013]

- Planning
- Bounded Model Checking
- Circuit
- Configuration
- Quantitative Information Flow
- Scheduling
- Handmade
- Random
http://www.cril.univ-artois.fr/KC/

Experiment: Comparing Weighted Model Counters

High-performance computing cluster at Rice University (NOTS):

- Hardware: Xeon E5-2650v2 CPU (2.60-GHz)
- Memory limit: 24 GB
- Time limit: 1000 seconds

Experiment: Comparing Weighted Model Counters

Table 1: Performance of state-of-the-art weighted model counters

Weight model counters	Benchmarks solved (of 1914)			
	Unique solver	Fastest solver	Total	
Virtual best solvers (VBS)	VBS1: with ADDMC	-	-	1771
	VBSO: without ADDMC	-	-	1647
	d4	12	283	1587
	c2d	0	13	1417
	miniC2D	8	61	1407
	ADDMC - our tool	$\mathbf{1 2 4}$	763	1404
	Cachet	14	651	1383

Experiment: Comparing Weighted Model Counters

Figure 1: Cactus plot of virtual best solvers (VBS1 with ADDMC; VBSO without ADDMC) and actual solvers

Conclusion

Summary:

- Problem: Boolean model counting (\#SAT)
- Complexity: \#P-complete
- Numerous applications, especially in probabilistic reasoning
- Techniques:
- Efficient data structure: algebraic decision diagrams (ADDs)
- Dynamic programming
- Experimental result: ADDMC improves virtual best solver

Future work:

- Other efficient data structures
- Affine algebraic decision diagrams (AADDs) [Sanner and McAllester, 2005]
- AND/OR multi-valued decision diagrams (AOMDDs) [Mateescu et al., 2008]
- Graph decomposition for Conjunctive Normal Form (CNF) clause clustering
- Model counting with tensor-network contraction [Dudek et al., 2019]
- Model counting with database technology [Dresden, 2020]

References I

R Iris Bahar, Erica A Frohm, Charles M Gaona, Gary D Hachtel, Enrico Macii, Abelardo Pardo, and Fabio Somenzi. Algebraic decision diagrams and their applications. Form Method Syst Des, 10(2-3):171-206, 1997.
Randal E Bryant. Graph-based algorithms for Boolean function manipulation. IEEE TC, 35(8), 1986.

Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model checking using satisfiability solving. Form Method Syst Des, 19(1):7-34, 2001.
Adnan Darwiche. New advances in compiling CNF into decomposable negation normal form. In ECAI, pages 328-332, 2004.
Rina Dechter. Bucket elimination: a unifying framework for reasoning. Al, 113(1-2):41-85, 1999.

TU Dresden. Exploiting database management systems and treewidth for counting. Practical Aspects of Declarative Languages, page 151, 2020.

References II

Jeffrey M Dudek, Leonardo Dueñas-Osorio, and Moshe Y Vardi. Efficient contraction of large tensor networks for weighted model counting through graph decompositions. arXiv preprint arXiv:1908.04381, 2019.

Leonardo Duenas-Osorio, Kuldeep S Meel, Roger Paredes, and Moshe Y Vardi. Counting-based reliability estimation for power-transmission grids. In AAAI, 2017.

Vladimir Klebanov, Norbert Manthey, and Christian Muise. SAT-based analysis and quantification of information flow in programs. In QEST, pages 177-192, 2013.
Jean-Marie Lagniez and Pierre Marquis. An improved decision-DNNF compiler. In IJCAI, pages 667-673, 2017.
Robert Mateescu, Rina Dechter, and Radu Marinescu. AND/OR multi-valued decision diagrams for graphical models. JAIR, 33:465-519, 2008.
Benjamin J McMahan, Guoqiang Pan, Patrick Porter, and Moshe Y Vardi. Projection pushing revisited. In $E D B T$, pages 441-458, 2004.

References III

Umut Oztok and Adnan Darwiche. A top-down compiler for sentential decision diagrams. In IJCAI, pages 3141-3148, 2015.
Hector Palacios and Hector Geffner. Compiling uncertainty away in conformant planning problems with bounded width. JAIR, 35:623-675, 2009.
G. Pan and M.Y. Vardi. Symbolic techniques in satisfiability solving. J Autom Reason, 35 (1-3):25-50, 2005.
Tian Sang, Fahiem Bacchus, Paul Beame, Henry A Kautz, and Toniann Pitassi. Combining component caching and clause learning for effective model counting. SAT, pages 20-28, 2004.

Tian Sang, Paul Beame, and Henry Kautz. Solving Bayesian networks by weighted model counting. In AAAI, volume 1, pages 475-482. AAAI Press, 2005.
Scott Sanner and David McAllester. Affine algebraic decision diagrams and their application to structured probabilistic inference. In IJCAI, pages 1384-1390, 2005.

References IV

Michael A Shwe, Blackford Middleton, David E Heckerman, Max Henrion, Eric J Horvitz, Harold P Lehmann, and Gregory F Cooper. Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. Methods of Information in Medicine, 1991.

Carsten Sinz, Andreas Kaiser, and Wolfgang Küchlin. Formal methods for the validation of automotive product configuration data. AI EDAM, 17(1):75-97, 2003.
Leslie G Valiant. The complexity of enumeration and reliability problems. SICOMP, 8(3): 410-421, 1979.

