
Quantitative Reasoning on Hybrid Formulas with Dynamic Programming

Vu Phan’s PhD thesis defense
Committee: Prof. Moshe Vardi, Prof. Devika Subramanian, Prof. Leonardo Duenas-Osorio

Rice University, Department of Computer Science

2022-07-14

Motivation: probabilistic models quantify uncertainties in real-world applications

Bridge: probabilistic models are reducible to Boolean formulas

Statement: we can efficiently solve problems on Boolean formulas by partitioning

1 / 40



From Qualitative to Quantitative Reasoning

Boolean formula φ

SAT: find a satisfying assignment, i.e.,
model, of φ [Coo71]

Davis-Putnam-Logemann-Loveland
(DPLL) algorithm [DLL62]

Conflict-driven clause learning
(CDCL) [MS96]

Weighted SAT:

receive weights of assignments on
vars (φ)
find a model of φ with the highest
weight [SBK07]

Model counting: find the number of
satisfying assignments of φ [Val79]

2 / 40



Variable Eliminations

Pseudo-Boolean function f : BS → R
Maximal projection maxx f : BS\{x} → R(

max
x

f
)
(τ) := max (f (τ ∪ {⟨x , 1⟩}), f (τ ∪ {⟨x , 0⟩}))(

max
S

f

)
(∅) ∈ R

Summative projection
∑

x f : BS\{x} → R(∑
x

f

)
(τ) := f (τ ∪ {⟨x , 1⟩}) + f (τ ∪ {⟨x , 0⟩})(∑

S

f

)
(∅) ∈ R

3 / 40



Quantitative Problems

Boolean formula φ, where vars (φ) = S

Boolean function f = [φ] : BS → B
Weight function W : BS → R+

Problem Form Notes Complexity

Weighted SAT maxS (f ·W )
≡ maximum SAT (MaxSAT),

NP-H
most probable explanation (MPE)

Model counting
∑

S f
≡ probability of evidence, i.e.,

#P-C
marginalization in Bayesian networks

Projected counting
∑

X maxY f {X ,Y }: partition of S #PNP-C

Exist-random SAT
maxX

∑
Y f ≡ maximum a posteriori (MAP) NP#P-H

(ERSAT)

4 / 40



Hybrid Constraints

Conjunction normal form (CNF) formulas are conjunctions of disjunctive clauses

Disjunctive clauses (disjunctions of literals) alone can be inconvenient

XOR clauses (XORs of literals) are natural in cryptography [BKR11]
Performance of CNF encodings (e.g., [Tse83]) depends on solvers [Pre09]

XOR-CNF formulas are conjunctions of disjunctive and XOR clauses

φ = x ∧ (x ∨ ¬y) ∧ (y ⊕ z) factored representation

[φ] = [x ] · [x ∨ ¬y ] · [y ⊕ z ] (multiplicative) join

5 / 40



Approaches to Solving Constraints

Model counting and SAT on XOR-CNF: x ∧ (x ∨ ¬y) ∧ (y ⊕ z)

0 1 1 0 0

z z

x

y

Backtracking search: binary
decision tree

1 0

z z

x

y

Knowledge compilation: binary
decision diagrams (BDDs)
[Bry86], etc.

op{y ,z}

{y , z}

op{x}

{x , y}{x}

Dynamic programming:
project-join tree, where

op :=

{∑
model counting

max SAT 6 / 40



Main Contribution: Versatile Framework for Quantitative Reasoning

Dynamic programming: exploit factored representations [Pha19; DPV20a]

XOR-CNF formula: product of clauses
Assignment weight: product of literal weights

Project-join tree T for an XOR-CNF formula φ: project out variables and conjoin clauses

Planning phase: build T from φ
Execution phase: traverse T to reason about φ

Single plan: multiple executions, one for each problem

Projection operators Published (overlap with [Dud21, Jeff]) Archived (later submissions)

One:
∑

,max Model counting [DPV20b] Weighted SAT [PV22b]

Two:
∑

max,max
∑

Projected counting [DPV21] ERSAT [PV22a]

7 / 40



Progress

1 Model Counting
Planners
Executors
Evaluating Model Counters

2 Weighted SAT
Evaluating Weighted-SAT Solvers

3 Projected Counting
Evaluating Projected Counters

4 Exist-Random SAT (ERSAT)
Evaluating ERSAT Solvers

8 / 40



Model Counting

Applications of model counting:

Analysis of information flows [KMM13]
Estimation of power reliability [Due+17]

Input: a Boolean formula φ, where S = vars (φ)

Output: the number of assignments on S that satisfy φ

#φ :=
∑
S

[φ] model count

9 / 40



Early Projection: Push Variable Eliminations Inward

∑
x ,y ,z

f (x) · g (x , y) · h (y , z) function over 3 variables: x , y , z

=
∑
y ,z

(∑
x

f (x) · g (x , y)

)
· h (y , z) function over 2 variables: x , y

=
∑
y ,z

(∑
x

f (x) · g (x , y)

)
· h (y , z) function over 1 variable: y

=
∑
y ,z

(∑
x

f (x) · g (x , y)

)
· h (y , z) function over 2 variables: y , z

Bayesian inference [ZP94] Database-query optimization [McM+04]

10 / 40



Project-Join Tree

XOR-CNF formula φ = x ∧ (x ∨ ¬y) ∧ (y ⊕ z)
Planning phase ↓

Project-join tree T

∑
{y ,z}

y ⊕ z

∑
{x}

x ∨ ¬yx

Execution phase ↓

Model count #φ = 2

f (x , y) = [x ] · [x ∨ ¬y ]
g (y) =

∑
x

f (x , y)

h (y , z) = g (y) · [y ⊕ z ]

#φ =
∑
y ,z

h (y , z)

Width of T width (T ) = 2 11 / 40



Framework and Implementation

DPMC (dynamic-programming model counter) framework:

Planner: XOR-CNF formula 7→ project-join tree

Executor: project-join tree 7→ model count

Model counter (planner-executor pair)

Implementation:

Constraint-programming planner

Algebraic-decision-diagram executor

ADDMC [DPV20a]

Tree-decomposition planner

Tensor executor

TensorOrder [DDV19, Jeff]
Crossover1

Crossover2

Performance on single CPU cores:

Crossover1 > ADDMC > TensorOrder > Crossover2
12 / 40



Planning with Heuristics in Constraint Programming (CP)

XOR-CNF formula: x ∧ (x ∨ ¬y) ∧ (y ⊕ z)

x y

z

Gaifman graph, i.e., primal constraint graph

op{y ,z}

{y , z}

op{x}

{x , y}{x}

Project-join tree

CP heuristics:

Variable ordering:

Maximum-cardinality search [TY84]

Minimum fill-in [Dec03]

Clause ordering:

Bucket elimination [Dec99]
Bouquet’s Method [Bou99]

13 / 40



Planning with Tree Decompositions (TDs)

XOR-CNF formula: x ∧ (x ∨ ¬y) ∧ (y ⊕ z)

x y

z

Gaifman graph

{y , z}

{x , y}

TD [RS91]

op{y ,z}

{y , z}

op{x}

{x , y}{x}

Project-join tree (Jeff)

Tree decomposers from the PACE Challenge 2017 [Del+18]:

FlowCutter [Str17] Meiji [Tam19] htd [AMW17]

14 / 40



Execution with Tensors and Algebraic Decision Diagrams (ADDs)

x1 x2 x3 f (x1, x2, x3)

1 1 1 2.7
1 1 0 3.1
1 0 1 1.4
1 0 0 1.4
0 1 1 2.7
0 1 0 3.1
0 0 1 2.7
0 0 0 3.1

Tensor: dense representation (Jeff)

1.4 2.7 3.1

x1

x2

x3

ADD: sparse representation

15 / 40



Evaluation of Model Counters

1606 CNF formulas:

1049 benchmarks from Bayesian inference [SBK05]
577 benchmarks from planning [PG09]

State-of-the-art model counters:

Cachet [San+04]
C2D [Dar04]
miniC2D [OD15]
D4 [LM17]

NOTS cluster at Rice University:

CPU: single cores
RAM: 25 GB
Time: 1000 seconds per solver per benchmark

16 / 40



Cactus Plot: Planner-Executor Combinations

0 250 500 750 1000 1250 1500 1750 2000

Number of solved formulas (of 1606 in total)

10−2

10−1

100

101

102

103

L
on

ge
st

so
lv
in
g
ti
m
e
(s
) TD-ADD

CP-ADD

TD-tensor

CP-tensor

Tree-decomposition (TD) planner outperforms constraint-programming (CP) planner

17 / 40



Cactus Plot: Actual Solvers

0 250 500 750 1000 1250 1500 1750 2000

Number of solved formulas (of 1606 in total)

10−2

10−1

100

101

102

103

L
on

ge
st

so
lv
in
g
ti
m
e
(s
) DPMC

C2D

D4

Cachet

miniC2D

DPMC (TD planner and ADD executor) is competitive

18 / 40



Cactus Plot: Virtual Best Solvers

0 250 500 750 1000 1250 1500 1750 2000

Number of solved formulas (of 1606 in total)

10−2

10−1

100

101

102

103

L
on

ge
st

so
lv
in
g
ti
m
e
(s
) DPMC

C2D

D4

Cachet

miniC2D

VBS0

VBS1

Virtual best solver VBS1 (with DPMC) significantly outperforms VBS0 (without DPMC)

19 / 40



Performance on 1522 Project-Join Trees for 1606 Benchmarks (94%)

0 20 40 60 80 100

Mean of 10 consecutive project-join tree widths 4 ≤ wi < . . . < wi+9 ≤ 100

10−2

10−1

100

101

102

103

M
ea
n
P
A
R
-2

sc
or
e

DPMC

C2D

D4

Cachet

miniC2D

PAR2score (tool , φ) :=

{
solving time if tool solves φ within 1000 seconds

2000 otherwise

20 / 40



Progress

1 Model Counting
Planners
Executors
Evaluating Model Counters

2 Weighted SAT
Evaluating Weighted-SAT Solvers

3 Projected Counting
Evaluating Projected Counters

4 Exist-Random SAT (ERSAT)
Evaluating ERSAT Solvers

21 / 40



Weighted SAT

Applications of weighted SAT and its equivalent, MaxSAT:

Verification of neural networks [Sak20]
Synthesis of hardware exploits [Zha+20]

Input 1: a Boolean formula φ, where S = vars (φ)

Input 2: a weight function W mapping assignments on S to positive real-valued weights

Output: a model of φ with the highest weight

max
S

([φ] ·W ) the maximum

argmax
S

([φ] ·W ) a maximizer

22 / 40



Finding Maximizers

Pseudo-Boolean function f : BS → R
Derivative sign dsgnx f : BS\{x} → B{x}

(
dsgn

x
f

)
(τ) :=

{
{⟨x , 1⟩} if f (τ ∪ {⟨x , 1⟩}) ≥ f (τ ∪ {⟨x , 0⟩})
{⟨x , 0⟩} otherwise

Iterative maximization in pseudo-Boolean programming [CHJ90] and MaxSAT [KVZ22]:

Let g = maxx f : BS\{x} → R
Assume τ ∈ BS\{x} is a maximizer of g
Then α = τ ∪ (dsgnx f ) (τ) ∈ BS is a maximizer of f

DPO (dynamic-programming optimizer):

Use iterative maximization to find a maximizer
Adapt DPMC (model counting) to find the maximum

23 / 40



Evaluation of Weighted-SAT Solvers

Benchmarks:

1606 application formulas in CNF from model counting
961 crafted formulas in XOR-CNF from MaxSAT [KVZ22, Zhiwei]

State-of-the-art solvers:

UWrMaxSat [Pio20]
MaxHS [DB11]
GaussMaxHS [SM21]

24 / 40



Application CNF Benchmarks

0 250 500 750 1000 1250 1500 1750 2000 2250

Number of solved formulas (of 1606 in total)

10−3

10−2

10−1

100

101

102

103

L
on

ge
st

so
lv
in
g
ti
m
e
(s
) DPO

GaussMaxHS

MaxHS

UWrMaxSat does not support floating-point weights

25 / 40



Crafted XOR-CNF Benchmarks

0 200 400 600 800 1000 1200 1400

Number of solved formulas (of 961 in total)

10−3

10−2

10−1

100

101

102

103

L
on

ge
st

so
lv
in
g
ti
m
e
(s
) DPO

GaussMaxHS

MaxHS

UWrMaxSat

Neither UWrMaxSat nor MaxHS supports XOR

26 / 40



Progress

1 Model Counting
Planners
Executors
Evaluating Model Counters

2 Weighted SAT
Evaluating Weighted-SAT Solvers

3 Projected Counting
Evaluating Projected Counters

4 Exist-Random SAT (ERSAT)
Evaluating ERSAT Solvers

27 / 40



Projected Counting

Applications of projected counting:

Planning [Azi+15]
Sampling [Gup+19]

Input 1: a Boolean formula φ

Input 2: a partition {X ,Y } of vars (φ)

X : summative variables
Y : maximal variables

Output: the number of assignments τ on X such that φ | τ is satisfiable∑
X

max
Y

[φ] projected count

Summative projection does not commute with maximal projection:∑
x

max
y

f ̸= max
y

∑
x

f in general

28 / 40



Graded Project-Join Tree

∑
X

max
Y

[(x1 ∨ ¬y1) ∧ (¬x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (¬x2 ∨ ¬y2)] projected count

∑
∅ ∑

{x2}

max{y2}

¬x2 ∨ ¬y2x2 ∨ y2

∑
{x1}

max{y1}

¬x1 ∨ y1x1 ∨ ¬y1

⟨X ,Y ⟩-graded project-join tree: X nodes are closer to the root than Y nodes

29 / 40



Adapting DPMC (Model Counting) for Projected Counting

Reduction from graded project-join trees to ungraded project-join trees (Jeff)

ProCount (projected counter):

Adapt planners:

tree decompositions (Jeff)
constraint programming

Adapt executor: ADDs

30 / 40



Evaluation of Projected Counters

613 CNF formulas:

500 benchmarks from projected counting [SM19]
113 benchmarks from projected sampling [Gup+19]

State-of-the-art projected counters:

reSSAT [LWJ17]
D4p [LM17]
projMC [LM19]

31 / 40



Cactus Plot: Virtual Best Solvers

0 50 100 150 200 250 300 350 400

Number of solved formulas (of 613 in total)

10−2

10−1

100

101

102

103

L
on

ge
st

so
lv
in
g
ti
m
e
(s
)

ProCount

D4p

projMC

reSSAT

VBS0

VBS1

32 / 40



Performance on 291 Project-Join Trees for 613 Benchmarks (47%)

0 20 40 60 80 100

Mean of 10 consecutive project-join tree widths 1 ≤ wi < . . . < wi+9 ≤ 138

10−2

10−1

100

101

102

103

M
ea
n
P
A
R
-2

sc
or
e

ProCount

D4p

projMC

reSSAT

ProCount is fast on benchmarks whose project-join trees have low widths (below 60)
33 / 40



Progress

1 Model Counting
Planners
Executors
Evaluating Model Counters

2 Weighted SAT
Evaluating Weighted-SAT Solvers

3 Projected Counting
Evaluating Projected Counters

4 Exist-Random SAT (ERSAT)
Evaluating ERSAT Solvers

34 / 40



Exist-Random SAT (ERSAT)

Applications of ERSAT:
Planning [ML98]
Fairness in machine learning [GBM21]

Input 1: a Boolean formula φ
Input 2: a partition {X ,Y } of vars (φ)

X : maximal variables
Y : summative variables

Output: an assignment τ on X that maximizes the model count of φ | τ

max
X

∑
Y

[φ] the maximum

argmax
X

∑
Y

[φ] a maximizer

DPER (dynamic-programming ERSAT solver):
Adapt ProCount (projected counting) to find the maximum
Adapt DPO (weighted SAT) to find a maximizer 35 / 40



Evaluation of ERSAT Solvers

613 CNF formulas from projected counting:∑
X

max
Y

f original

max
Y

∑
X

f adapted for ERSAT

State-of-the-art ERSAT solvers:

erSSAT [LWJ18]
DC-SSAT [MB05]

36 / 40



Cactus Plot: Virtual Best Solvers

0 50 100 150 200 250

Number of solved formulas (of 613 in total)

10−3

10−2

10−1

100

101

102

103

L
on

ge
st

so
lv
in
g
ti
m
e
(s
)

DPER

erSSAT

DC-SSAT

VBS0

VBS1

37 / 40



Performance on 204 Project-Join Trees for 613 Benchmarks (33%)

0 25 50 75 100 125 150 175 200 225

Mean of 10 consecutive project-join tree widths 1 ≤ wi < . . . < wi+9 ≤ 244

10−2

10−1

100

101

102

103

M
ea
n
P
A
R
-2

sc
or
e

DPER

erSSAT

DC-SSAT

DPER is fast on benchmarks whose project-join trees have low widths (below 80)
38 / 40



Summary: Versatile Framework for Quantitative Reasoning

op{y ,z}

{y , z}

op{x}

{x , y}{x}

Project-join tree for x ∧ (x ∨ ¬y) ∧ (y ⊕ z), where op :=

{∑
for summative variables

max for maximal variables

Planning phase:

Tree decompositions (TDs)
Constraint programming

Execution phase:

Tensors
Algebraic decision diagrams (ADDs)

Single plan with multiple executions:

Model counting
Weighted SAT

Projected counting

Exist-random SAT (ERSAT)
39 / 40



Unifying Current Work and Proposing Future Work

Current work: two projection operators and two join operators

Project-join tree Projections Join Problem Students

Ungraded

∑
S

∏
c∈φ [c] Model counting [DPV20b] Vu, Jeff

maxS
∏

c∈φ [c] Weighted SAT [PV22b] Vu

maxS
∑

c∈φ [c] MaxSAT [KVZ22] Zhiwei

Graded

∑
X maxY

∏
c∈φ [c] Projected counting [DPV21] Vu, Jeff

maxX
∑

Y

∏
c∈φ [c] ERSAT [PV22a] Vu

minX maxY
∑

c∈φ [c] MinMaxSAT [KVZ22] Zhiwei

Future work:

Hybrid inputs [KVZ22]:

Cardinality constraints

Pseudo-Boolean constraints

Executors:

Multi-core ADDs [DP15]
Database engines [Fic+20]

40 / 40



References I

[AMW17] Michael Abseher, Nysret Musliu, and Stefan Woltran. “htd—a free, open-source
framework for (customized) tree decompositions and beyond”. In: International
Conference on AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems. 2017, pp. 376–386.

[Azi+15] Rehan Abdul Aziz et al. “Projected model counting”. In: International Conference
on Theory and Applications of Satisfiability Testing. 2015, pp. 121–137.

[BKR11] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. “Biclique
cryptanalysis of the full AES”. In: International Conference on the Theory and
Application of Cryptology and Information Security. 2011, pp. 344–371.

[Bou99] Fabrice Bouquet. “Gestion de la dynamicité et énumération d’impliquants
premiers: une approche fondée sur les Diagrammes de Décision Binaire”.
PhD thesis. Aix-Marseille 1, 1999.

40 / 40



References II

[Bry86] Randal E Bryant. “Graph-based algorithms for Boolean function manipulation”.
In: IEEE Transactions on Computers 100.8 (1986), pp. 677–691.

[CHJ90] Yves Crama, Pierre Hansen, and Brigitte Jaumard. “The basic algorithm for
pseudo-Boolean programming revisited”. In: Discrete Applied Mathematics
29.2–3 (1990), pp. 171–185.

[Coo71] Stephen A Cook. “The complexity of theorem-proving procedures”. In: ACM
Symposium on Theory of Computing. 1971, pp. 151–158.

[Dar04] Adnan Darwiche. “New advances in compiling CNF to decomposable negation
normal form”. In: European Conference on Artificial Intelligence. 2004,
pp. 318–322.

[DB11] Jessica Davies and Fahiem Bacchus. “Solving MaxSAT by solving a sequence of
simpler SAT instances”. In: International Conference on Principles and Practice
of Constraint Programming. 2011, pp. 225–239.

40 / 40



References III

[DDV19] Jeffrey M Dudek, Leonardo Duenas-Osorio, and Moshe Y Vardi. “Efficient
contraction of large tensor networks for weighted model counting through graph
decompositions”. In: arXiv preprint arXiv:1908.04381 (2019).

[Dec03] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[Dec99] Rina Dechter. “Bucket elimination: a unifying framework for reasoning”. In:
Artificial Intelligence 113.1–2 (1999), pp. 41–85.

[Del+18] Holger Dell et al. “The PACE 2017 parameterized algorithms and computational
experiments challenge: the second iteration”. In: International Symposium on
Parameterized and Exact Computation. 2018.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. “A machine program for
theorem proving”. In: Communications of the ACM 5.7 (1962), pp. 394–397.

40 / 40



References IV

[DP15] Tom van Dijk and Jaco van de Pol. “Sylvan: multi-core decision diagrams”. In:
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. 2015, pp. 677–691.

[DPV20a] Jeffrey M Dudek, Vu H N Phan, and Moshe Y Vardi. “ADDMC: weighted model
counting with algebraic decision diagrams”. In: AAAI Conference on Artificial
Intelligence. Vol. 34. 2020, pp. 1468–1476.

[DPV20b] Jeffrey M Dudek, Vu H N Phan, and Moshe Y Vardi. “DPMC: weighted model
counting by dynamic programming on project-join trees”. In: International
Conference on Principles and Practice of Constraint Programming. 2020,
pp. 211–230.

40 / 40



References V

[DPV21] Jeffrey M Dudek, Vu H N Phan, and Moshe Y Vardi. “ProCount: weighted
projected model counting with graded project-join trees”. In: International
Conference on Theory and Applications of Satisfiability Testing. 2021,
pp. 152–170.

[Dud21] Jeffrey M Dudek. “Planning and execution for discrete integration”. PhD thesis.
Rice University, 2021.

[Due+17] Leonardo Duenas-Osorio et al. “Counting-based reliability estimation for
power-transmission grids”. In: AAAI Conference on Artificial Intelligence. Vol. 31.
2017.

[Fic+20] Johannes K Fichte et al. “Exploiting database management systems and
treewidth for counting”. In: International Symposium on Practical Aspects of
Declarative Languages. 2020, pp. 151–167.

40 / 40



References VI

[GBM21] Bishwamittra Ghosh, Debabrota Basu, and Kuldeep S Meel. “Justicia: a
stochastic SAT approach to formally verify fairness”. In: AAAI Conference on
Artificial Intelligence. Vol. 35. 2021, pp. 7554–7563.

[Gup+19] Rahul Gupta et al. “WAPS: weighted and projected sampling”. In: International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems. 2019, pp. 59–76.

[KMM13] Vladimir Klebanov, Norbert Manthey, and Christian Muise. “SAT-based analysis
and quantification of information flow in programs”. In: International Conference
on Quantitative Evaluation of Systems. 2013, pp. 177–192.

[KVZ22] Anastasios Kyrillidis, Moshe Y Vardi, and Zhiwei Zhang. “DPMS: an ADD-based
symbolic approach for generalized MaxSAT solving”. In: arXiv preprint
arXiv:2205.03747 (2022).

40 / 40



References VII

[LM17] Jean Marie Lagniez and Pierre Marquis. “An improved decision-DNNF compiler”.
In: IJCAI. Vol. 17. 2017, pp. 667–673.

[LM19] Jean Marie Lagniez and Pierre Marquis. “A recursive algorithm for projected
model counting”. In: AAAI Conference on Artificial Intelligence. Vol. 33. 2019,
pp. 1536–1543.

[LWJ17] Nian Ze Lee, Yen Shi Wang, and Jie Hong R Jiang. “Solving stochastic Boolean
satisfiability under random-exist quantification”. In: IJCAI. 2017, pp. 688–694.

[LWJ18] Nian Ze Lee, Yen Shi Wang, and Jie Hong R Jiang. “Solving exist-random
quantified stochastic Boolean satisfiability via clause selection”. In: IJCAI. 2018,
pp. 1339–1345.

[MB05] Stephen M Majercik and Byron Boots. “DC-SSAT: a divide-and-conquer
approach to solving stochastic satisfiability problems efficiently”. In: AAAI. 2005,
pp. 416–422.

40 / 40



References VIII

[McM+04] Benjamin J McMahan et al. “Projection pushing revisited”. In: International
Conference on Extending Database Technology. 2004, pp. 441–458.

[ML98] Stephen M Majercik and Michael L Littman. “MAXPLAN: a new approach to
probabilistic planning”. In: International Conference on Artificial Intelligence
Planning Systems. 1998, pp. 86–93.

[MS96] J P Marques Silva and K A Sakallah. “GRASP—a new search algorithm for
satisfiability”. In: International Conference on Computer Aided Design. 1996,
pp. 220–227.

[OD15] Umut Oztok and Adnan Darwiche. “A top-down compiler for sentential decision
diagrams”. In: International Joint Conference on Artificial Intelligence. 2015.

[PG09] Hector Palacios and Hector Geffner. “Compiling uncertainty away in conformant
planning problems with bounded width”. In: Journal of Artificial Intelligence
Research 35 (2009), pp. 623–675.

40 / 40



References IX

[Pha19] Vu Hoang Nguyen Phan. “Weighted model counting with algebraic decision
diagrams”. MA thesis. Rice University, 2019.

[Pio20] Marek Piotrow. “UwrMaxSAT: efficient solver for MaxSAT and pseudo-Boolean
problems”. In: International Conference on Tools with Artificial Intelligence.
2020, pp. 132–136.

[Pre09] Steven D Prestwich. “CNF encodings”. In: Handbook of satisfiability 185 (2009),
pp. 75–97.

[PV22a] Vu H N Phan and Moshe Y Vardi. “DPER: dynamic programming for
exist-random stochastic SAT”. In: arXiv preprint arXiv:2205.09826 (2022).

[PV22b] Vu H N Phan and Moshe Y Vardi. “DPO: dynamic-programming optimization on
hybrid constraints”. In: arXiv preprint arXiv:2205.08632 (2022).

40 / 40



References X

[RS91] Neil Robertson and Paul D Seymour. “Graph minors. X. Obstructions to
tree-decomposition”. In: Journal of Combinatorial Theory, Series B 52.2 (1991),
pp. 153–190.

[Sak20] Masahiro Sakai. “BNN verification dataset for MaxSAT Evaluation 2020”. In:
MaxSAT Evaluation 2020 (2020), p. 37.

[San+04] Tian Sang et al. “Combining component caching and clause learning for effective
model counting”. In: SAT 4 (2004).

[SBK05] Tian Sang, Paul Beame, and Henry A Kautz. “Performing Bayesian inference by
weighted model counting”. In: AAAI. Vol. 5. 2005, pp. 475–481.

[SBK07] Tian Sang, Paul Beame, and Henry A Kautz. “A dynamic approach for MPE and
weighted MaxSAT”. In: IJCAI. 2007, pp. 173–179.

40 / 40



References XI

[SM19] Mate Soos and Kuldeep S Meel. “BIRD: engineering an efficient CNF-XOR SAT
solver and its applications to approximate model counting”. In: AAAI Conference
on Artificial Intelligence. Vol. 33. 2019, pp. 1592–1599.

[SM21] Mate Soos and Kuldeep S Meel. “Gaussian elimination meets maximum
satisfiability”. In: International Conference on Principles of Knowledge
Representation and Reasoning. Vol. 18. 2021, pp. 581–587.

[Str17] Ben Strasser. “Computing tree decompositions with FlowCutter: PACE 2017
submission”. In: arXiv preprint arXiv:1709.08949 (2017).

[Tam19] Hisao Tamaki. “Positive-instance driven dynamic programming for treewidth”. In:
Journal of Combinatorial Optimization 37.4 (2019), pp. 1283–1311.

[Tse83] Grigori S Tseitin. “On the complexity of derivation in propositional calculus”. In:
Automation of reasoning. Springer, 1983, pp. 466–483.

40 / 40



References XII

[TY84] Robert E Tarjan and Mihalis Yannakakis. “Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic
hypergraphs”. In: SIAM Journal on computing 13.3 (1984), pp. 566–579.

[Val79] Leslie G Valiant. “The complexity of enumeration and reliability problems”. In:
SIAM Journal on Computing 8.3 (1979), pp. 410–421.

[Zha+20] Changjian Zhang et al. “Automated synthesis of minimal hardware exploits with
Checkmate and MaxSAT solver”. In: MaxSAT Evaluation 2020 (2020), p. 49.

[ZP94] Nevin L Zhang and David Poole. “A simple approach to Bayesian network
computations”. In: Canadian Conference on Artificial Intelligence. 1994.

40 / 40


	Introduction
	Problems
	Constraints
	Approaches
	Contribution

	Model Counting
	Planners
	Executors
	Evaluating Model Counters

	Weighted SAT
	Evaluating Weighted-SAT Solvers

	Projected Counting
	Evaluating Projected Counters

	Exist-Random SAT (ERSAT)
	Evaluating ERSAT Solvers

	Conclusion
	References

