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Motivation: probabilistic models quantify uncertainties in real-world applications

Bridge: probabilistic models are reducible to Boolean formulas

Statement: we can efficiently solve problems on Boolean formulas by partitioning
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From Qualitative to Quantitative Reasoning

Boolean formula φ

SAT: find a satisfying assignment, i.e.,
model, of φ [Coo71]

Davis-Putnam-Logemann-Loveland
(DPLL) algorithm [DLL62]

Conflict-driven clause learning
(CDCL) [MS96]

Weighted SAT:

receive weights of assignments on
vars (φ)
find a model of φ with the highest
weight [SBK07]

Model counting: find the number of
satisfying assignments of φ [Val79]
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Variable Eliminations

Pseudo-Boolean function f : BS → R
Maximal projection maxx f : BS\{x} → R(

max
x

f
)
(τ) := max (f (τ ∪ {⟨x , 1⟩}), f (τ ∪ {⟨x , 0⟩}))(

max
S

f

)
(∅) ∈ R

Summative projection
∑

x f : BS\{x} → R(∑
x

f

)
(τ) := f (τ ∪ {⟨x , 1⟩}) + f (τ ∪ {⟨x , 0⟩})(∑

S

f

)
(∅) ∈ R
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Quantitative Problems

Boolean formula φ, where vars (φ) = S

Boolean function f = [φ] : BS → B
Weight function W : BS → R+

Problem Form Notes Complexity

Weighted SAT maxS (f ·W )
≡ maximum SAT (MaxSAT),

NP-H
most probable explanation (MPE)

Model counting
∑

S f
≡ probability of evidence, i.e.,

#P-C
marginalization in Bayesian networks

Projected counting
∑

X maxY f {X ,Y }: partition of S #PNP-C

Exist-random SAT
maxX

∑
Y f ≡ maximum a posteriori (MAP) NP#P-H

(ERSAT)
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Hybrid Constraints

Conjunction normal form (CNF) formulas are conjunctions of disjunctive clauses

Disjunctive clauses (disjunctions of literals) alone can be inconvenient

XOR clauses (XORs of literals) are natural in cryptography [BKR11]
Performance of CNF encodings (e.g., [Tse83]) depends on solvers [Pre09]

XOR-CNF formulas are conjunctions of disjunctive and XOR clauses

φ = x ∧ (x ∨ ¬y) ∧ (y ⊕ z) factored representation

[φ] = [x ] · [x ∨ ¬y ] · [y ⊕ z ] (multiplicative) join
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Approaches to Solving Constraints

Model counting and SAT on XOR-CNF: x ∧ (x ∨ ¬y) ∧ (y ⊕ z)

0 1 1 0 0

z z

x

y

Backtracking search: binary
decision tree

1 0

z z

x

y

Knowledge compilation: binary
decision diagrams (BDDs)
[Bry86], etc.

op{y ,z}

{y , z}

op{x}

{x , y}{x}

Dynamic programming:
project-join tree, where

op :=

{∑
model counting

max SAT 6 / 40



Main Contribution: Versatile Framework for Quantitative Reasoning

Dynamic programming: exploit factored representations [Pha19; DPV20a]

XOR-CNF formula: product of clauses
Assignment weight: product of literal weights

Project-join tree T for an XOR-CNF formula φ: project out variables and conjoin clauses

Planning phase: build T from φ
Execution phase: traverse T to reason about φ

Single plan: multiple executions, one for each problem

Projection operators Published (overlap with [Dud21, Jeff]) Archived (later submissions)

One:
∑

,max Model counting [DPV20b] Weighted SAT [PV22b]

Two:
∑

max,max
∑

Projected counting [DPV21] ERSAT [PV22a]
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Progress

1 Model Counting
Planners
Executors
Evaluating Model Counters

2 Weighted SAT
Evaluating Weighted-SAT Solvers

3 Projected Counting
Evaluating Projected Counters

4 Exist-Random SAT (ERSAT)
Evaluating ERSAT Solvers
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Model Counting

Applications of model counting:

Analysis of information flows [KMM13]
Estimation of power reliability [Due+17]

Input: a Boolean formula φ, where S = vars (φ)

Output: the number of assignments on S that satisfy φ

#φ :=
∑
S

[φ] model count
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Early Projection: Push Variable Eliminations Inward

∑
x ,y ,z

f (x) · g (x , y) · h (y , z) function over 3 variables: x , y , z

=
∑
y ,z

(∑
x

f (x) · g (x , y)

)
· h (y , z) function over 2 variables: x , y

=
∑
y ,z

(∑
x

f (x) · g (x , y)

)
· h (y , z) function over 1 variable: y

=
∑
y ,z

(∑
x

f (x) · g (x , y)

)
· h (y , z) function over 2 variables: y , z

Bayesian inference [ZP94] Database-query optimization [McM+04]
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Project-Join Tree

XOR-CNF formula φ = x ∧ (x ∨ ¬y) ∧ (y ⊕ z)
Planning phase ↓

Project-join tree T

∑
{y ,z}

y ⊕ z

∑
{x}

x ∨ ¬yx

Execution phase ↓

Model count #φ = 2

f (x , y) = [x ] · [x ∨ ¬y ]
g (y) =

∑
x

f (x , y)

h (y , z) = g (y) · [y ⊕ z ]

#φ =
∑
y ,z

h (y , z)

Width of T width (T ) = 2 11 / 40



Framework and Implementation

DPMC (dynamic-programming model counter) framework:

Planner: XOR-CNF formula 7→ project-join tree

Executor: project-join tree 7→ model count

Model counter (planner-executor pair)

Implementation:

Constraint-programming planner

Algebraic-decision-diagram executor

ADDMC [DPV20a]

Tree-decomposition planner

Tensor executor

TensorOrder [DDV19, Jeff]
Crossover1

Crossover2

Performance on single CPU cores:

Crossover1 > ADDMC > TensorOrder > Crossover2
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Planning with Heuristics in Constraint Programming (CP)

XOR-CNF formula: x ∧ (x ∨ ¬y) ∧ (y ⊕ z)

x y

z

Gaifman graph, i.e., primal constraint graph

op{y ,z}

{y , z}

op{x}

{x , y}{x}

Project-join tree

CP heuristics:

Variable ordering:

Maximum-cardinality search [TY84]

Minimum fill-in [Dec03]

Clause ordering:

Bucket elimination [Dec99]
Bouquet’s Method [Bou99]
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Planning with Tree Decompositions (TDs)

XOR-CNF formula: x ∧ (x ∨ ¬y) ∧ (y ⊕ z)

x y

z

Gaifman graph

{y , z}

{x , y}

TD [RS91]

op{y ,z}

{y , z}

op{x}

{x , y}{x}

Project-join tree (Jeff)

Tree decomposers from the PACE Challenge 2017 [Del+18]:

FlowCutter [Str17] Meiji [Tam19] htd [AMW17]
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Execution with Tensors and Algebraic Decision Diagrams (ADDs)

x1 x2 x3 f (x1, x2, x3)

1 1 1 2.7
1 1 0 3.1
1 0 1 1.4
1 0 0 1.4
0 1 1 2.7
0 1 0 3.1
0 0 1 2.7
0 0 0 3.1

Tensor: dense representation (Jeff)

1.4 2.7 3.1

x1

x2

x3

ADD: sparse representation
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Evaluation of Model Counters

1606 CNF formulas:

1049 benchmarks from Bayesian inference [SBK05]
577 benchmarks from planning [PG09]

State-of-the-art model counters:

Cachet [San+04]
C2D [Dar04]
miniC2D [OD15]
D4 [LM17]

NOTS cluster at Rice University:

CPU: single cores
RAM: 25 GB
Time: 1000 seconds per solver per benchmark
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Cactus Plot: Planner-Executor Combinations
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Tree-decomposition (TD) planner outperforms constraint-programming (CP) planner
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Cactus Plot: Actual Solvers
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DPMC (TD planner and ADD executor) is competitive
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Cactus Plot: Virtual Best Solvers
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Virtual best solver VBS1 (with DPMC) significantly outperforms VBS0 (without DPMC)
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Performance on 1522 Project-Join Trees for 1606 Benchmarks (94%)
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PAR2score (tool , φ) :=

{
solving time if tool solves φ within 1000 seconds

2000 otherwise
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Progress

1 Model Counting
Planners
Executors
Evaluating Model Counters

2 Weighted SAT
Evaluating Weighted-SAT Solvers

3 Projected Counting
Evaluating Projected Counters

4 Exist-Random SAT (ERSAT)
Evaluating ERSAT Solvers
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Weighted SAT

Applications of weighted SAT and its equivalent, MaxSAT:

Verification of neural networks [Sak20]
Synthesis of hardware exploits [Zha+20]

Input 1: a Boolean formula φ, where S = vars (φ)

Input 2: a weight function W mapping assignments on S to positive real-valued weights

Output: a model of φ with the highest weight

max
S

([φ] ·W ) the maximum

argmax
S

([φ] ·W ) a maximizer
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Finding Maximizers

Pseudo-Boolean function f : BS → R
Derivative sign dsgnx f : BS\{x} → B{x}

(
dsgn

x
f

)
(τ) :=

{
{⟨x , 1⟩} if f (τ ∪ {⟨x , 1⟩}) ≥ f (τ ∪ {⟨x , 0⟩})
{⟨x , 0⟩} otherwise

Iterative maximization in pseudo-Boolean programming [CHJ90] and MaxSAT [KVZ22]:

Let g = maxx f : BS\{x} → R
Assume τ ∈ BS\{x} is a maximizer of g
Then α = τ ∪ (dsgnx f ) (τ) ∈ BS is a maximizer of f

DPO (dynamic-programming optimizer):

Use iterative maximization to find a maximizer
Adapt DPMC (model counting) to find the maximum
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Evaluation of Weighted-SAT Solvers

Benchmarks:

1606 application formulas in CNF from model counting
961 crafted formulas in XOR-CNF from MaxSAT [KVZ22, Zhiwei]

State-of-the-art solvers:

UWrMaxSat [Pio20]
MaxHS [DB11]
GaussMaxHS [SM21]
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Application CNF Benchmarks
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UWrMaxSat does not support floating-point weights
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Crafted XOR-CNF Benchmarks
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Neither UWrMaxSat nor MaxHS supports XOR
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Progress

1 Model Counting
Planners
Executors
Evaluating Model Counters

2 Weighted SAT
Evaluating Weighted-SAT Solvers

3 Projected Counting
Evaluating Projected Counters

4 Exist-Random SAT (ERSAT)
Evaluating ERSAT Solvers
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Projected Counting

Applications of projected counting:

Planning [Azi+15]
Sampling [Gup+19]

Input 1: a Boolean formula φ

Input 2: a partition {X ,Y } of vars (φ)

X : summative variables
Y : maximal variables

Output: the number of assignments τ on X such that φ | τ is satisfiable∑
X

max
Y

[φ] projected count

Summative projection does not commute with maximal projection:∑
x

max
y

f ̸= max
y

∑
x

f in general
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Graded Project-Join Tree

∑
X

max
Y

[(x1 ∨ ¬y1) ∧ (¬x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (¬x2 ∨ ¬y2)] projected count

∑
∅ ∑

{x2}

max{y2}

¬x2 ∨ ¬y2x2 ∨ y2

∑
{x1}

max{y1}

¬x1 ∨ y1x1 ∨ ¬y1

⟨X ,Y ⟩-graded project-join tree: X nodes are closer to the root than Y nodes
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Adapting DPMC (Model Counting) for Projected Counting

Reduction from graded project-join trees to ungraded project-join trees (Jeff)

ProCount (projected counter):

Adapt planners:

tree decompositions (Jeff)
constraint programming

Adapt executor: ADDs
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Evaluation of Projected Counters

613 CNF formulas:

500 benchmarks from projected counting [SM19]
113 benchmarks from projected sampling [Gup+19]

State-of-the-art projected counters:

reSSAT [LWJ17]
D4p [LM17]
projMC [LM19]
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Cactus Plot: Virtual Best Solvers
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Performance on 291 Project-Join Trees for 613 Benchmarks (47%)
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ProCount is fast on benchmarks whose project-join trees have low widths (below 60)
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Progress

1 Model Counting
Planners
Executors
Evaluating Model Counters

2 Weighted SAT
Evaluating Weighted-SAT Solvers

3 Projected Counting
Evaluating Projected Counters

4 Exist-Random SAT (ERSAT)
Evaluating ERSAT Solvers
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Exist-Random SAT (ERSAT)

Applications of ERSAT:
Planning [ML98]
Fairness in machine learning [GBM21]

Input 1: a Boolean formula φ
Input 2: a partition {X ,Y } of vars (φ)

X : maximal variables
Y : summative variables

Output: an assignment τ on X that maximizes the model count of φ | τ

max
X

∑
Y

[φ] the maximum

argmax
X

∑
Y

[φ] a maximizer

DPER (dynamic-programming ERSAT solver):
Adapt ProCount (projected counting) to find the maximum
Adapt DPO (weighted SAT) to find a maximizer 35 / 40



Evaluation of ERSAT Solvers

613 CNF formulas from projected counting:∑
X

max
Y

f original

max
Y

∑
X

f adapted for ERSAT

State-of-the-art ERSAT solvers:

erSSAT [LWJ18]
DC-SSAT [MB05]
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Cactus Plot: Virtual Best Solvers
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Performance on 204 Project-Join Trees for 613 Benchmarks (33%)
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DPER is fast on benchmarks whose project-join trees have low widths (below 80)
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Summary: Versatile Framework for Quantitative Reasoning

op{y ,z}

{y , z}

op{x}

{x , y}{x}

Project-join tree for x ∧ (x ∨ ¬y) ∧ (y ⊕ z), where op :=

{∑
for summative variables

max for maximal variables

Planning phase:

Tree decompositions (TDs)
Constraint programming

Execution phase:

Tensors
Algebraic decision diagrams (ADDs)

Single plan with multiple executions:

Model counting
Weighted SAT

Projected counting

Exist-random SAT (ERSAT)
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Unifying Current Work and Proposing Future Work

Current work: two projection operators and two join operators

Project-join tree Projections Join Problem Students

Ungraded

∑
S

∏
c∈φ [c] Model counting [DPV20b] Vu, Jeff

maxS
∏

c∈φ [c] Weighted SAT [PV22b] Vu

maxS
∑

c∈φ [c] MaxSAT [KVZ22] Zhiwei

Graded

∑
X maxY

∏
c∈φ [c] Projected counting [DPV21] Vu, Jeff

maxX
∑

Y

∏
c∈φ [c] ERSAT [PV22a] Vu

minX maxY
∑

c∈φ [c] MinMaxSAT [KVZ22] Zhiwei

Future work:

Hybrid inputs [KVZ22]:

Cardinality constraints

Pseudo-Boolean constraints

Executors:

Multi-core ADDs [DP15]
Database engines [Fic+20]
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